Skip to main content
Log in

Synchronization of surface acoustic wave (SAW)-based delay-coupled self-oscillating MEMS

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

Coupled limit cycle oscillators have potential usage in neurocomputing, pattern recognition, signal processing units such as multilayer perceptrons and stable timekeeping devices. Here, we study the synchronization dynamics of parametrically excited coupled dome-shaped MEMS (microelectromechanical system), exhibiting limit cycle oscillations and hysteresis, which have previously been shown to synchronize with an external reference signal [1, 2]. The coupling considered here is through surface acoustic wave (SAW), emanating in the substrate near each oscillator, due to periodic forcing of the same, which acts as a base vibration term for the forced oscillator. Dynamics of the individual MEMS can be adequately modeled as Mathieu–van der Pol–Duffing (MVDPD) oscillator [3], while the effect of SAW can be added as a delay coupling term, because of finite time involved in travel of this signal, resulting in a set of delay differential equations (DDEs). Various solutions for different parameter values are identified and the synchronization regions mapped under the case of a general dissipative type coupling. Numerical integration of the DDE for the system as well as the ODE obtained by applying the Krylov–Bogoliubov averaging method to the same is used for detailed analysis. The averaged equations are further reduced to get a phase equation which can be used to map the regions of synchronization at a much smaller computational budget. It is found that in general the delay terms lead to an increase in the synchronization region, while a cubic coupling term would be more effective. Effect of different parameters of individual oscillator on synchronization is also studied, which provide guidance for fabrication and testing of the optimized system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zalalutdinov, M., Aubin, K.L., Michael, C., Reichenbach, R.B., Alan, T., Zehnder, A.T., Houston, B.H., Parpia, J.M., Craighead, H.G.: Shell-type micromechanical oscillator, In: Microtechnologies for the New Millennium 2003, International Society for Optics and Photonics, (2003), 229–236

  2. Aubin, K., Zalalutdinov, M., Alan, T., Reichenbach, R.B., Rand, R., Zehnder, A., Parpia, J., Craighead, H.: Limit cycle oscillations in cw laser-driven nems. J. Microelectromechanical Syst. 13(6), 1018–1026 (2004)

    Article  Google Scholar 

  3. Pandey, M., Rand, R.H., Zehnder, A.T.: Frequency locking in a forced mathieu-van der pol-duffing system. Nonlinear Dyn. 54(1–2), 3–12 (2008)

    Article  MathSciNet  Google Scholar 

  4. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, vol. 20. Springer Science & Business Media, Berlin (2011)

    Book  Google Scholar 

  5. Pandey, M.: Analysis of entrainment and clamping loss in an optically actuated mems, Ph.D. thesis, Cornell University (2008)

  6. Pandey, M., Rand, R., Zehnder, A.: Perturbation analysis of entrainment in a micromechanical limit cycle oscillator. Commun. Nonlinear Sci. Numer. Simul. 12(7), 1291–1301 (2007)

    Article  Google Scholar 

  7. Balanov, A., Janson, N., Postnov, D., Sosnovtseva, O.: Synchronization: From Simple to Complex. Springer Science & Business Media, Berlin (2008)

    MATH  Google Scholar 

  8. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  9. Sahai, T., Zehnder, A.T.: Modeling of coupled dome-shaped microoscillators. J. Microelectromechanical Syst. 17(3), 777–786 (2008)

    Article  Google Scholar 

  10. Hoppensteadt, F.C., Izhikevich, E.M.: Synchronization of mems resonators and mechanical neurocomputing. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 48(2), 133–138 (2001)

    Article  MathSciNet  Google Scholar 

  11. Zehnder, A.T., Rand, R.H., Krylov, S.: Locking of electrostatically coupled thermo-optically driven mems limit cycle oscillators. Int. J. Non-Linear Mech. 102, 92–100 (2018)

    Article  Google Scholar 

  12. Miller, G., Pursey, H.: On the partition of energy between elastic waves in a semi-infinite solid, In: Proceedings of the Royal Society of London a: mathematical, physical and engineering sciences, 233, The Royal Society, (1955), 55–69

  13. Pandey, M., Reichenbach, R., Zehnder, A., Lal, A., Craighead, H.: Reducing anchor loss in mems resonators using mesa isolation. J. Microelectromechanical Syst. 18, 836–844 (2009). https://doi.org/10.1109/JMEMS.2009.2016271

    Article  Google Scholar 

  14. Wirkus, S., Rand, R.: The dynamics of two coupled van der pol oscillators with delay coupling. Nonlinear Dyn. 30(3), 205–221 (2002)

    Article  MathSciNet  Google Scholar 

  15. Zang, H., Zhang, T., Zhang, Y.: Stability and bifurcation analysis of delay coupled van der pol-duffing oscillators. Nonlinear Dyn. 75(1–2), 35–47 (2014)

    Article  MathSciNet  Google Scholar 

  16. Maccari, A.: Vibration amplitude control for a van der pol-duffing oscillator with time delay. J. Sound Vib. 317(1), 20–29 (2008)

    Article  Google Scholar 

  17. Li, X., Ji, J., Hansen, C.H.: Dynamics of two delay coupled van der pol oscillators. Mech. Res. Commun. 33(5), 614–627 (2006)

    Article  MathSciNet  Google Scholar 

  18. Reddy, D.R., Sen, A., Johnston, G.L.: Time delay induced death in coupled limit cycle oscillators. Phys. Rev. Lett. 80(23), 5109 (1998)

    Article  Google Scholar 

  19. Heckman, C., Sah, S., Rand, R.: Dynamics of microbubble oscillators with delay coupling. Commun. Nonlinear Sci. Num. Simul. 15(10), 2735–2743 (2010)

    Article  Google Scholar 

  20. Rand, R.H.: Lecture notes on nonlinear vibration (2012). URL https://ecommons.cornell.edu/handle/1813/28989

  21. Strogatz, S.: Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry and Engineering. Perseus Books Group, New York (2001)

    MATH  Google Scholar 

  22. Feldman, M.: Hilbert Transform Applications in Mechanical Vibration. John Wiley, Hoboken (2011)

    Book  Google Scholar 

  23. Nayfeh, A.H.: Perturbation Methods. John Wiley, Hoboken (2008)

    Google Scholar 

  24. Polking, J.C.: Pplane, rice university (2003). URL https://www.mathworks.com/matlabcentral/fileexchange/61636-pplane

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix:-1D slow flow equation for linear coupled system

$$\begin{aligned} {\dot{\theta }}= & {} \varDelta +\frac{3\beta }{8\omega } {\frac{-16\,{A}^{4}\cos \left( \omega \,\tau -\theta \right) \lambda \,B _{{D}}+16\,{A}^{4}\cos \left( \omega \,\tau +\theta \right) \lambda \,B_{ {D}}+8\,{A}^{2}\cos \left( 2\,\omega \,\tau +2\,\theta \right) {B_{{D}}} ^{2}-8\,{A}^{2}\cos \left( 2\,\omega \,\tau -2\,\theta \right) {B_{{D}}} ^{2}}{ \left( \left( 3\,{A}^{2}-4 \right) \lambda +4\,B_{{D}} \right) ^{2}}} \nonumber \\&+\frac{4B_D}{8}\bigg ({\frac{ \left( {A}^{2}\lambda +2\,B_{{D}}\cos \left( \omega \,\tau + \theta \right) \right) \sin \left( \omega \,\tau -\theta \right) }{{A}^ {2}\lambda +2\,B_{{D}}\cos \left( \omega \,\tau -\theta \right) }}-{ \frac{ \left( {A}^{2}\lambda +2\,B_{{D}}\cos \left( \omega \,\tau - \theta \right) \right) \sin \left( \omega \,\tau +\theta \right) }{{A}^ {2}\lambda +2\,B_{{D}}\cos \left( \omega \,\tau +\theta \right) }} \bigg ) \end{aligned}$$
(43)

Appendix:-1D slow flow equation for cubic coupled system

$$\begin{aligned} \begin{aligned} {\dot{\theta }}=&\varDelta +\frac{3\beta }{8\omega } \left[ \left( \frac{2A^3[3 \omega ^2 B_{DC}(\cos (\omega \tau +\theta )-1)-\lambda ]}{\lambda (4-3A^2)+A^2\omega ^2 B_{DC} [18cos(\omega \tau +\theta )-3cos(2\omega \tau +2\theta )-15]}\right) ^2\right. \\&-\left. \left( \frac{2A^3[3 \omega ^2 B_{DC}(\cos (\omega \tau -\theta )-1)-\lambda ]}{\lambda (4-3A^2)+A^2\omega ^2 B_{DC} [18cos(\omega \tau -\theta )-3cos(2\omega \tau -2\theta )-15]}\right) ^2 \right] \\&+\frac{3\omega ^2 B_{DC} }{8}\left[ \left( \frac{\left( \frac{2A^3[3 \omega ^2 B_{DC}(\cos (\omega \tau +\theta )-1)-\lambda ]}{\lambda (4-3A^2)+A^2\omega ^2 B_{DC} [18\cos (\omega \tau +\theta )-3\cos (2\omega \tau +2\theta )-15]}\right) ^3}{\left( \frac{2A^3[3 \omega ^2 B_{DC}(\cos (\omega \tau -\theta )-1)-\lambda ]}{\lambda (4-3A^2)+A^2\omega ^2 B_{DC} [18cos(\omega \tau -\theta )-3cos(2\omega \tau -2\theta )-15]}\right) }\right. \right. \\&+\left( \frac{2A^3[3 \omega ^2 B_{DC}(\cos (\omega \tau -\theta )-1)-\lambda ]}{\lambda (4-3A^2)+A^2\omega ^2 B_{DC} [18\cos (\omega \tau -\theta )-3\cos (2\omega \tau -2\theta )-15]}\right) \\&\left. \left( \frac{2A^3[3 \omega ^2 B_{DC}(\cos (\omega \tau +\theta )-1)-\lambda ]}{\lambda (4-3A^2)+A^2\omega ^2 B_{DC} [18\cos (\omega \tau +\theta )-3\cos (2\omega \tau +2\theta )-15]}\right) \right) \sin (\omega \tau -\theta )\\&-\left( \frac{(\frac{2A^3[3 \omega ^2 B_{DC}(\cos (\omega \tau -\theta )-1)-\lambda ]}{\lambda (4-3A^2)+A^2\omega ^2 B_{DC} [18\cos (\omega \tau -\theta )-3\cos (2\omega \tau -2\theta )-15]})^3}{(\frac{2A^3[3 \omega ^2 B_{DC}(\cos (\omega \tau +\theta )-1)-\lambda ]}{\lambda (4-3A^2)+A^2\omega ^2 B_{DC} [18\cos (\omega \tau +\theta )-3\cos (2\omega \tau +2\theta )-15]})}\right. \\&+\left( \frac{2A^3[3 \omega ^2 B_{DC}(cos(\omega \tau -\theta )-1)-\lambda ]}{\lambda (4-3A^2)+A^2\omega ^2 B_{DC} [18\cos (\omega \tau -\theta )-3\cos (2\omega \tau -2\theta )-15]}\right) \\&\left. \left( \frac{2A^3[3 \omega ^2 B_{DC}(\cos (\omega \tau +\theta )-1)-\lambda ]}{\lambda (4-3A^2)+A^2\omega ^2 B_{DC} [18\cos (\omega \tau +\theta )-3\cos (2\omega \tau +2\theta )-15]}\right) \right) \sin (\omega \tau +\theta )\\&+\left( \frac{2A^3[3 \omega ^2 B_{DC}(\cos (\omega \tau -\theta )-1)-\lambda ]}{\lambda (4-3A^2)+A^2\omega ^2 B_{DC} [18\cos (\omega \tau -\theta )-3\cos (2\omega \tau -2\theta )-15]}\right) ^2 \sin (2\omega \tau +2\theta )\\&\left. -\left( \frac{2A^3[3 \omega ^2 B_{DC}(\cos (\omega \tau +\theta )-1)-\lambda ]}{\lambda (4-3A^2)+A^2\omega ^2 B_{DC} [18\cos (\omega \tau +\theta )-3\cos (2\omega \tau +2\theta )-15]}\right) ^2 \sin (2\omega \tau -2\theta )\right] \end{aligned} \end{aligned}$$
(44)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govind, M., Pandey, M. Synchronization of surface acoustic wave (SAW)-based delay-coupled self-oscillating MEMS. Int J Adv Eng Sci Appl Math 12, 218–232 (2020). https://doi.org/10.1007/s12572-020-00277-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-020-00277-3

Keywords

Navigation