Bahrani, A., & Hagh Joo, M. H. (2011). Response of some wheat (Triticum aestivum L.) genotypes to salinity at germination and early seedling growth stages. World Applied Sciences Journal, 16(4), 599–609.
Google Scholar
Barrett, C. B. (2010). Measuring food insecurity. Science, 327(5967), 825–828.
CAS
Article
Google Scholar
Bhatta, M., Baenziger, S. P., Waters, B. M., Poudel, R., Belamkar, V., Poland, J., et al. (2018). Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19103237.
Chatzav, M., Peleg, Z., Ozturk, L., Yazici, A., Fahima, T., Cakmak, I., & Saranga, Y. (2010). Genetic diversity for grain nutrients in wild emmer wheat: Potential for wheat improvement. Annals of Botany, 105, 1211–1220. https://doi.org/10.1093/aob/mcq024.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chu, C.-G., Faris, J. D., Friesen, T. L., & Xu, S. S. (2006). Molecular mapping of hybrid necrosis genes ne1 and Ne2 in hexaploid wheat using microsatellite markers. Theoretical and Applied Genetics, 112, 1374–1381. https://doi.org/10.1007/s00122-006-0239-9.
CAS
Article
PubMed
Google Scholar
Cooper, J. K., Ibrahim, A. M. H., Rudd, J., Hays, D., Malla, S., & Baker, J. (2013). Increasing hard winter wheat yield potential via synthetic hexaploid wheat: II. Heritability and combining ability of yield and its components. Crop Science, 53, 67–73. https://doi.org/10.2135/cropsci2011.07.0383.
Article
Google Scholar
Day-Rubenstein, K., Heisey, P., Shoemaker, R., Sullivan, J., & Frisvold, G. (2005). Crop genetic resources: An economic appraisal. Economic Information Bulletin Number 2, may 2005. Washington: Economic Research Service/USDA.
Google Scholar
Del Blanco, I. A., Rajaram, S., & Kronstad, W. E. (2001). Agronomic potential of synthetic hexaploid wheat-derived populations. Crop Science, 41, 670–676. https://doi.org/10.2135/cropsci2001.413670x.
Article
Google Scholar
Dempewolf, H., Eastwood, R. J., Guarino, L., Khoury, C. K., Müller, J. V., & Toll, J. (2014). Adapting agriculture to climate change: A global initiative to collect, conserve, and use crop wild relatives. Agroecology and Sustainable Food Systems, 38, 369–377. https://doi.org/10.1080/21683565.2013.870629.
Article
Google Scholar
Dempewolf, H., Baute, G., Anderson, J., Kilian, B., Smith, C., & Guarino, L. (2017). Past and future use of wild relatives in crop breeding. Crop Science, 57, 1070–1082. https://doi.org/10.2135/cropsci2016.10.0885.
Article
Google Scholar
Dreisigacker, S., Kishii, M., Lage, J., & Warburton, M. (2008). Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement. Australian Journal of Agricultural Research, 59, 413. https://doi.org/10.1071/AR07225.
Article
Google Scholar
Elhaddoury, J., Lhaloui, S., Udupa, S. M., Moatassim, B., Taiq, R., Rabeh, M., Kamlaoui, M., & Hammadi, M. (2012). Registration of ‘Kharoba’: A bread wheat cultivar developed through doubled haploid breeding. Journal of Plant Registrations, 6, 169–173. https://doi.org/10.3198/jpr2011.07.0385crc.
Article
Google Scholar
Ford-Lloyd, B. V., Schmidt, M., Armstrong, S. J., Barazani, O., Engels, J., Hadas, R., Hammer, K., Kell, S. P., Kang, D., Khoshbakht, K., Li, Y., Long, C., Lu, B. R., Ma, K., Nguyen, V. T., Qiu, L., Ge, S., Wei, W., Zhang, Z., & Maxted, N. (2011). Crop wild relatives—Undervalued, underutilized and under threat? BioScience, 61, 559–565. https://doi.org/10.1525/bio.2011.61.7.10.
Article
Google Scholar
Friesen, T. L., Xu, S. S., & Harris, M. O. (2008). Stem rust, tan spot, Stagonospora nodorum blotch, and hessian fly resistance in Langdon durum–Aegilops tauschii synthetic hexaploid wheat lines. Crop Science. https://doi.org/10.2135/cropsci2007.08.0463.
Gollin, D., Smale, M., & Skovmand, B. (2000). Searching an ex situ collection of wheat genetic resources. American Journal of Agricultural Economics, 82(4), 812–827.
Article
Google Scholar
Hajjar, R., & Hodgkin, T. (2007). The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica, 156, 1–13. https://doi.org/10.1007/s10681-007-9363-0.
Article
Google Scholar
King, J., Grewal, S., Yang, C.-Y., Edwards, S. H., Scholefield, D., Ashling, S., et al. (2018). Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes. Annals of Botany, 121, 229–240. https://doi.org/10.1093/aob/mcx149.
CAS
Article
PubMed
Google Scholar
Kumar, S., Kumari, P., Kumar, U., Grover, M., Singh, A. M., Rakesh Singh, R., et al. (2013). Molecular approaches for designing heat tolerant wheat. Journal of Plant Biochemistry and Biotechnology, 22, 359–371. https://doi.org/10.1007/s13562-013-0229-3.
CAS
Article
Google Scholar
Lage, J., & Trethowan, R. M. (2008). CIMMYT’s use of synthetic hexaploid wheat in breeding for adaptation to rainfed environments globally. Australian Journal of Agricultural Research, 59, 461. https://doi.org/10.1071/AR07223.
Article
Google Scholar
Li, J., Wan, H., & Yang, W. (2014). Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. Journal of Systematics and Evolution, 52, 735–742. https://doi.org/10.1111/jse.12110.
Article
Google Scholar
Li, A., Liu, D., Yang, W., Kishii, M., & Mao, L. (2018). Synthetic hexaploid wheat: Yesterday, today, and tomorrow. Engineering, 4, 552–558. https://doi.org/10.1016/j.eng.2018.07.001.
CAS
Article
Google Scholar
Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333, 616–620. https://doi.org/10.1126/science.1204531.
CAS
Article
Google Scholar
Mickelbart, M. V., Hasegawa, P. M., & Bailey-Serres, J. (2015). Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics, 16, 237–251. https://doi.org/10.1038/nrg3901.
CAS
Article
PubMed
Google Scholar
Mujeeb-Kazi, A. (1995). Utilizing wild grass biodiversity in wheat improvement 15 years of wide cross research at CIMMYT. Mexico: CIMMYT.
Google Scholar
Ogbonnaya, F. C., Abdalla, O., Mujeeb-Kazi, A., Alvina, G. K., Xu, S. S., Gosman, N., et al. (2013). Synthetic hexaploids: Harnessing species of the primary gene pool for wheat improvement. Plant Breeding Reviews, 37, 35–122.
Article
Google Scholar
Rouse, M. N., Olson, E. L., Gill, B. S., Pumphrey, M. O., & Jin, Y. (2011). Stem rust resistance in germplasm. Crop Science, 51, 2074–2078. https://doi.org/10.2135/cropsci2010.12.0719.
Article
Google Scholar
Singh, R., & Govindan, V. (2017). Zinc-biofortified wheat: harnessing genetic diversity for improved nutritional quality. Science Brief: Biofortification No. 1, May 2017. Bonn, Germany: CIMMYT, HarvestPlus, and the Global Crop Diversity Trust.
Singh, S., Vikram, P., Sehgal, D., Burgueño, J., Sharma, A., Singh, S. K., Sansaloni, C. P., Joynson, R., Brabbs, T., Ortiz, C., Solis-Moya, E., Govindan, V., Gupta, N., Sidhu, H. S., Basandrai, A. K., Basandrai, D., Ledesma-Ramires, L., Suaste-Franco, M. P., Fuentes-Dávila, G., Moreno, J. I., Sonder, K., Singh, V. K., Singh, S., Shokat, S., Arif, M. A. R., Laghari, K. A., Srivastava, P., Bhavani, S., Kumar, S., Pal, D., Jaiswal, J. P., Kumar, U., Chaudhary, H. K., Crossa, J., Payne, T. S., Imtiaz, M., Sohu, V. S., Singh, G. P., Bains, N. S., Hall, A., & Pixley, K. V. (2018). Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security. Scientific Reports, 8, 12527. https://doi.org/10.1038/s41598-018-30667-4.
CAS
Article
PubMed
PubMed Central
Google Scholar
van Ginkel, M., & Ogbonnaya, F. (2006). Using synthetic wheats to breed cultivars better adapted to changing production conditions. Proceedings of 13th Agronomy Conference. Perth, Western Australia. 10–14 September 2006. http://www.regional.org.au/au/pdf/asa/2006/4830_vanginkelm.pdf. Accessed 1 Dec 2019.
Velu, G., & Singh, R. P. (2013). Phenotyping in wheat breeding. Phenotyping for Plant Breeding. https://doi.org/10.1007/978-1-4614-8320-5_2.
Warburton, M. L., Crossa, J., Franco, J., Kazi, M., Trethowan, R., Rajaram, S., Pfeiffer, W., Zhang, P., Dreisigacker, S., & Ginkel, M. . (2006). Bringing wild relatives back into the family: Recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica, 149, 289–301. https://doi.org/10.1007/s10681-005-9077-0.
CAS
Article
Google Scholar
Xepapadeas, A., Ralli, P., Kougea, E., Spyrou, S., Stavropoulos, N., Tsiaousi, V., & Tsivelikas, A. (2014). Valuing insurance services emerging from a gene bank: The case of the Greek Gene Bank. Ecological Economics, 97, 140–149. https://doi.org/10.1016/j.ecolecon.2013.11.012.
Article
Google Scholar
Yu, G. T., Wang, T., Anderson, K. M., Harris, M. O., Cai, X., & Xu, S. S. (2012). Evaluation and haplotype analysis of elite synthetic hexaploid wheat lines for resistance to hessian fly. Crop Science, 52, 752–763. https://doi.org/10.2135/cropsci2011.05.0290.
Article
Google Scholar
Zhang, H., Mittal, N., Leamy, L. J., Barazani, O., & Song, B. (2017). Back into the wild-apply untapped genetic diversity of wild relatives for crop improvement. Evolutionary Applications, 10, 5–24. https://doi.org/10.1111/eva.12434.
Article
PubMed
Google Scholar