Skip to main content

Advertisement

Log in

Global food markets, trade and the cost of climate change adaptation

  • Original Paper
  • Published:
Food Security Aims and scope Submit manuscript

Abstract

Achieving food security in the face of climate change is a major challenge for humanity in the 21st century but comprehensive analyses of climate change impacts, including global market feedbacks are still lacking. In the context of uneven impacts of climate change across regions interconnected through trade, climate change impact and adaptation policies in one region need to be assessed in a global framework. Focusing on four Eastern Asian countries and using a global integrated modeling framework we show that i) once imports are considered, the overall climate change impact on the amount of food available could be of opposite sign to the direct domestic impacts and ii) production and trade adjustments following price signals could reduce the spread of climate change impacts on food availability. We then investigated how pressure on the food system in Eastern Asia could be mitigated by a consumer support policy. We found that the costs of adaptation policies to 2050 varied greatly across climate projections. The costs of consumer support policies would also be lower if only implemented in one region but market price leakage could exacerbate pressure on food systems in other regions. We conclude that climate adaptation should no longer be viewed only as a geographically isolated local problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://rda.ucar.edu/datasets/ds314.0/

References

  • Adams, R. M., Hurd, B. H., Lenhart, S., & Leary, N. (1998). Effects of global climate change on agriculture: an interpretative review. Climate Research, 11, 19–30.

    Article  Google Scholar 

  • Alexandratos, N., Bruinsma, J., Boedeker, G., Schmidhuber, J., Broca, S., Shetty, P. et al. (2006). World agriculture: Towards 2030/2050. Prospects for food, nutrition, agriculture and major commodity groups. FAO.

  • Bouët, A., Decreux, Y., Fontagne, L., Jean, S., Laborde, D. (2004). A consistent, ad-valorem equivalent measure of applied protection across the World: the MAcMap-HS6 database (CEPII Working Paper No. 2004-22).

  • Bourguignon, F., Pleskovič, B., Bank, W. (2008). Rethinking infrastructure for development: annual world bank conference on development economics–global, 2007. World Bank Publications.

  • Dalton, T. J., & Guei, R. G. (2003). Productivity gains from rice genetic enhancements in West Africa: countries and ecologies. World Development, 31, 359–374.

    Article  Google Scholar 

  • Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., et al. (2013). Sustainable intensification in agriculture: premises and policies. Science, 341, 33–34.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, C. L., Tabova, A. (2011). Coping with food price surges, In: Safeguarding food security in volatile global markets. Food and agriculture organization of the United nations (FAO), pp. 377–402.

  • Global Land Cover 2000 database (2003). European Commission, Joint Research Centre. http://gem.jrc.ec.europa.eu/products/glc2000/glc2000.php. Accessed 11 Nov 2008.

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: the challenge of feeding 9 billion people. Science, 327, 812–818.

    Article  CAS  PubMed  Google Scholar 

  • Gregory, P. J., Ingram, J. S. I., & Brklacich, M. (2005). Climate change and food security. Philosophical Transactions of the Royal Society B, 360, 2139–2148.

    Article  CAS  Google Scholar 

  • Grosh, M. E., Ninno, C. D., Tesliuc, E. D. (2008). For protection and promotion: The design and implementation of effective safety nets. World Bank Publications.

  • Hatfield, J., Boote, K., Fay, P., Hahn, L., Izaurralde, C., Kimball, B. A. et al. (2008). Agriculture, In: The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States, a report by the U.S. Climate change science program and the subcommittee on global change research. Washington, DC., USA, p. 362.

  • Havlík, P., Schneider, U. A., Schmid, E., Böttcher, H., Fritz, S., Skalský, R., et al. (2011). Global land-use implications of first and second generation biofuel targets. Energy Policy, 39, 5690–5702.

    Article  Google Scholar 

  • Havlík, P., Valin, H., Mosnier, A., Obersteiner, M., Baker, J. S., Herrero, M. et al. (2013). Crop productivity and the global livestock sector: implications for land use change and greenhouse gas emissions. American Journal of Agricultural Economics.

  • Hempel, S., Frieler, K., Warszawski, L., Schewe, J., & Piontek, F. (2013). A trend-preserving bias correction–the ISI-MIP approach. Earth System Dynamics Discussion, 4, 49–92.

    Article  Google Scholar 

  • Hertel, T. W., Burke, M. B., & Lobell, D. B. (2010). The poverty implications of climate-induced crop yield changes by 2030. Global Environmental Change, 20, 577–585.

    Article  Google Scholar 

  • Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. PNAS, 104, 19691–19696.

    Article  CAS  PubMed  Google Scholar 

  • Huang, J., Hu, R., van Meijl, H., & van Tongeren, F. (2004). Biotechnology boosts to crop productivity in China: trade and welfare implications. Journal of Development Economics, 75, 27–54.

    Article  Google Scholar 

  • Huang, H., von Lampe, M., & van Tongeren, F. (2011). Climate change and trade in agriculture. Food Policy, 36(Supplement 1), S9–S13.

    Article  Google Scholar 

  • Iglesias, A., Quiroga, S., & Diz, A. (2011). Looking into the future of agriculture in a changing climate. European Review of Agricultural Economics, 38, 427–447.

    Article  Google Scholar 

  • Iizumi, T., Yokozawa, M., & Nishimori, M. (2011). Probabilistic evaluation of climate change impacts on paddy rice productivity in Japan. Climatic Change, 107, 391–415.

    Article  Google Scholar 

  • IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor, & P. M. Midgley (Eds.), A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jansson, T., & Heckelei, T. (2009). A new estimator for trade costs and its small sample properties. Economic Modelling, 26, 489–498.

    Article  Google Scholar 

  • Knox, J., Hess, T., Daccache, A., & Wheeler, T. (2012). Climate change impacts on crop productivity in Africa and South Asia. Environmental Research Letters, 7, 034032.

    Article  Google Scholar 

  • Liu, Y., Wang, E., Yang, X., & Wang, J. (2010). Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s. Global Change Biology, 16, 2287–2299.

    Article  Google Scholar 

  • Lobell, D. B., & Field, C. B. (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2, 014002.

    Article  Google Scholar 

  • Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333, 616–620.

    Article  CAS  PubMed  Google Scholar 

  • Long, S. P. (2012). Virtual special issue on food security – greater than anticipated impacts of near-term global atmospheric change on rice and wheat. Global Change Biology, 18, 1489–1490.

    Article  Google Scholar 

  • Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., et al. (2007). Global climate projections. In Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. United Kingdom: Cambridge University Press.

    Google Scholar 

  • Mosnier, A., Havlík, P., Valin, H., Baker, J., Murray, B., Feng, S., et al. (2013). Alternative U.S. Biofuel mandates and global GHG emissions: the role of land use change, crop management and yield growth. Energy Policy, 57, 602–614.

    Article  Google Scholar 

  • Nakicenovic, N., Swart, R. (2000). Special report on emissions scenarios. Intergovernmental Panel on Climate Change.

  • Nelson, G. C., Rosegrant, M. W., Palazzo, A., Gray, I., Ingersoll, C., Robertson, R. et al. (2010). Food security and climate change: challenges to 2050 and beyond. International Food Policy Research Institute.

  • Nepstad, D. C., Stickler, C. M., & Almeida, O. T. (2006). Globalization of the Amazon Soy and beef industries: opportunities for conservation. Conservation Biology, 20, 1595–1603.

    Article  PubMed  Google Scholar 

  • Nwanze, K. F., Mohapatra, S., Kormawa, P., Keya, S., & Bruce-Oliver, S. (2006). Rice development in sub-Saharan Africa. Journal of the Science of Food and Agriculture, 86, 675–677.

    Article  CAS  Google Scholar 

  • Olesen, J. E., & Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16, 239–262.

    Article  Google Scholar 

  • Parry, M., Rosenzweig, C., Iglesias, A., Fischer, G., & Livermore, M. (1999). Climate change and world food security: a new assessment. Global Environmental Change, 9(Supplement 1), S51–S67.

    Article  Google Scholar 

  • Parry, M., Rosenzweig, C., & Livermore, M. (2005). Climate change, global food supply and risk of hunger. Philosophical Transactions of the Royal Society B, 360, 2125–2138.

    Article  Google Scholar 

  • Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., et al. (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467, 43–51.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Villegas, J., Challinor, A. J., Thornton, P. K., & Jarvis, A. (2013). Implications of regional improvement in global climate models for agricultural impact research. Environmental Research Letters, 8, 024018.

    Article  Google Scholar 

  • Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., et al. (2007). Climate models and their evaluation. In Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Roudier, P., Sultan, B., Quirion, P., & Berg, A. (2011). The impact of future climate change on West African crop yields: what does the recent literature say? Global Environmental Change, 21, 1073–1083.

    Article  Google Scholar 

  • Schmidhuber, J., & Tubiello, F. N. (2007). Global food security under climate change. PNAS, 104, 19703–19708.

    Article  CAS  PubMed  Google Scholar 

  • Seale, J., Regmi, A., Bernstein, J. (2003). International evidence on food consumption patterns. USDA.

  • Sheffield, J., Goteti, G., & Wood, E. F. (2006). Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. Journal of Climate, 19, 3088–3111.

    Article  Google Scholar 

  • Skalský, R., Tarasovičová, Z., Balkovič, J., Schmid, E., Fuchs, M., Moltchanova, E. et al. (2008). GEO-BENE global database for bio-physical modeling. GEOBENE project.

  • Smit, B., & Skinner, M. W. (2002). Adaptation options in agriculture to climate change: a typology. Mitigation and Adaptation Strategies for Global Change, 7, 85–114.

    Article  Google Scholar 

  • Smith, J. B. (1997). Setting priorities for adapting to climate change. Global Environmental Change, 7, 251–264.

    Article  Google Scholar 

  • Strzepek, K. (2012). A basin scale indicator approach to understanding the risk of climate variability and change: to water resources development and management (Background technical report).

  • Thomas, D. S. G., Twyman, C., Osbahr, H., & Hewitson, B. (2007). Adaptation to climate change and variability: farmer responses to intra-seasonal precipitation trends in South Africa. Climatic Change, 83, 301–322.

    Article  Google Scholar 

  • Tol, R. S. J., Fankhauser, S., & Smith, J. B. (1998). The scope for adaptation to climate change: what can we learn from the impact literature? Global Environmental Change, 8, 109–123.

    Article  Google Scholar 

  • Waha, K., Müller, C., Bondeau, A., Dietrich, J. P., Kurukulasuriya, P., Heinke, J., et al. (2013). Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Global Environmental Change, 23, 130–143.

    Article  Google Scholar 

  • Williams, J. R. (1995). The EPIC model. 909–1000.

  • Xiao, X., Ojima, D. S., Parton, W. J., Chen, Z., & Chen, D. (1995). Sensitivity of Inner Mongolia grasslands to climate change. Journal of Biogeography, 22, 643–648.

    Article  Google Scholar 

  • You, L., & Wood, S. (2006). An entropy approach to spatial disaggregation of agricultural production. Agricultural Systems, 90, 329–347.

    Article  Google Scholar 

  • Zhang, T., Huang, Y. (2012). Impacts of climate change and inter-annual variability on cereal crops in China from 1980 to 2008, 92, 1643–1652.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Mosnier.

Appendices

Appendix 1: Methodology

GLOBIOM’s 31 regions

ANZ: Australia, New Zealand; Brazil; Canada; China; Congo Basin: Cameroon, Central African Republic, Congo Republic, Democratic Republic of Congo, Equatorial Guinea, Gabon; Eastern Africa: Burundi, Ethiopia, Kenya, Rwanda, Tanzania, Uganda; EU Baltic: Estonia, Latvia, Lithuania; EU Central East: Bulgaria, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia; EU Middle West: Austria, Belgium, Germany, France, Luxembourg, Netherlands; EU North: Denmark, Finland, Ireland, Sweden, United Kingdom; EU South: Cyprus, Greece, Italy, Malta, Portugal, Spain; Former USSR: Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Moldova, Russian Federation, Tajikistan, Turkmenistan, Ukraine, Uzbekistan; India; Japan; Mexico; Middle East and North Africa (MENA): Algeria, Bahrain, Egypt, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunisia, United Arab Emirates, Yemen; Mongolia; Pacific Islands: Fiji Islands, Kiribati, Papua New Guinea, Samoa, Solomon Islands, Tonga, Vanuatu; RCAM: Bahamas, Barbados, Belize, Bermuda, Costa Rica, Cuba, Dominica, Dominican Republic, El Salvador, Grenada, Guatemala, Haiti, Honduras, Jamaica, Nicaragua, Netherland Antilles, Panama, St Lucia, St Vincent, Trinidad and Tobago; RCEU: Albania, Bosnia and Herzegovina, Croatia, Macedonia, Serbia-Montenegro; ROWE: Gibraltar, Iceland, Norway, Switzerland; RSAM: Argentina, Bolivia, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela; RSAS: Afghanistan, Bangladesh, Bhutan, Maldives, Nepal, Pakistan, Sri Lanka; RSEA OPA: Brunei Daressalaam, Indonesia, Singapore, Malaysia, Myanmar, Philippines, Thailand; RSEA PAC: Cambodia, Korea DPR, Laos, Viet Nam; South Africa; South Korea; Southern Africa: Angola, Botswana, Comoros, Lesotho, Madagascar, Malawi, Mauritius, Mozambique, Namibia, Reunion, Swaziland, Zambia, Zimbabwe; Turkey; United States of America (USA); Western Africa: Benin, Burkina Faso, Cape Verde, Chad, Cote d’Ivoire, Djibouti, Eritrea, Gambia, Ghana, Guinea, Guinea Bissau, Liberia, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra Leone, Somalia, Sudan, Togo .

Fig. 4
figure 4

Changes in the Climate Moisture Index (CMI) with respect to historical climate (2046–2055 vs. 1961–1990, A2 emissions scenario) show positive values for wetter climates and negative values of drier climates. The spatial resolution of the climate data from the GCMs was 1°. The ranking of the models for CMI was done by total area-weighting averages for the global and Northeast Asian countries

Fig. 5
figure 5

Food demand projections in GLOBIOM: average calorie consumption per capita per day (on the vertical axis) in Northeast Asian countries and the evolution of diet composition. RMMEAT refers to ruminant meat, MGMEAT refers to monogastric meat, and OSDVOL refers to oilseeds. Only GLOBIOM-modeled products are included (Table 1)

Table 1 Correspondence between food commodity categories and single products in GLOBIOM

Appendix 2: Methodology to assess the biophysical impact of climate change on crop calorie food availability in a region

Indexes:

  • r: region

  • r1: importing region

  • r2: exporting region

  • c: crop

  • m: management system

  • a: simulation unit

  • s: climate scenario in 2050 (s0 if historical climate)

Parameters:

  • Prod: impact of climate change on the regional production in tons

  • AreaInit: cultivated area in 2000 in hectares

  • Yield: crop yield in ton per hectare

  • Trade: bilateral trade flow from region r1 to region r2 in tons

  • Imports: total imports of a region in tons

  • Conso: food consumption in tons

  • α: share of the domestic production in regional food consumption

  • β: share of the import from region r2 in total imports of region r1

  • Cal: calorie content of a crop

  • FoodAv: total food availability from crops in a region in calories

  • ∆ is used to indicate the relative change of a parameter.

We first compute the average impact of climate change on the regional production:

  1. (1)
    $$ Pro{d}_{r,c,s}={\displaystyle {\sum}_{a,m} AreaIni{t}_{r,a,c,m}* Yiel{d}_{r,a,c,m,s}} $$
  2. (2)
    $$ \varDelta \boldsymbol{Pro}{\boldsymbol{d}}_{\boldsymbol{r},\boldsymbol{c},\boldsymbol{s}}=\frac{\boldsymbol{Pro}{\boldsymbol{d}}_{\boldsymbol{r},\boldsymbol{c},\boldsymbol{s}}}{\boldsymbol{Pro}{\boldsymbol{d}}_{\boldsymbol{r},\boldsymbol{c},\boldsymbol{s}\mathbf{0}}} $$

Then we compute the average impact of climate change on the imports:

  1. (3)
    $$ {\beta}_{r1,r2,c}=\frac{ Trad{e}_{r2,r1,c}}{{\displaystyle {\sum}_{r2}} Trad{e}_{r2,r1,c}} $$
  2. (4)
    $$ Import{s}_{r1,c,s}={\displaystyle {\sum}_{r2}{\beta}_{r1,r2,c}\cdot Trad{e}_{r2,r1,c}\cdot \Delta Pro{d}_{r2,c,s}} $$
  3. (5)
    $$ \varDelta \boldsymbol{Import}{\boldsymbol{s}}_{\boldsymbol{r},\boldsymbol{c},\boldsymbol{s}}=\frac{\boldsymbol{Import}{\boldsymbol{s}}_{\boldsymbol{r}\boldsymbol{1},\boldsymbol{c},\boldsymbol{s}}}{\boldsymbol{Import}{\boldsymbol{s}}_{\boldsymbol{r}\boldsymbol{1},\boldsymbol{c},\boldsymbol{s}\mathbf{0}}} $$

The final impact of climate change on total crop calorie availability for food consumption is the combination of the impact on domestic production and on imports:

  1. (6)
    $$ {\alpha}_{r1,c,s}=\frac{ Pro{d}_{r1,c,s}-{\displaystyle {\sum}_{r2} Trad{e}_{r1,r2,c,s}}}{ Cons{o}_{r1,c,s}} $$
  2. (7)
    $$ FoodA{v}_{r,s}={\displaystyle {\sum}_c Cons{o}_{r,c,s}\cdot Ca{l}_c\cdot \left({\alpha}_{r,c,s}\cdot \varDelta Pro{d}_{r,c,s}+\left(1-{\alpha}_{r1,c,s}\right)\cdot \varDelta Import{s}_{r.c.s}\ \right)} $$
  3. (8)
    $$ \varDelta \boldsymbol{FoodA}{\boldsymbol{v}}_{\boldsymbol{r},\boldsymbol{s}}=\frac{\boldsymbol{FoodA}{\boldsymbol{v}}_{\boldsymbol{r},\boldsymbol{s}}}{\boldsymbol{FoodA}{\boldsymbol{v}}_{\boldsymbol{r},\boldsymbol{s}\mathbf{0}}} $$

Appendix 3: Results

Table 2 Biophysical impact of climate change on crop calorie production, imports and food availability by 2050
Table 3 Evolution of food price index in the world and in the four Eastern Asian countries in 2050 (Base 2000−1) and percent change in price index with climate change compared to the historical climate

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosnier, A., Obersteiner, M., Havlík, P. et al. Global food markets, trade and the cost of climate change adaptation. Food Sec. 6, 29–44 (2014). https://doi.org/10.1007/s12571-013-0319-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-013-0319-z

Keywords

Navigation