Advertisement

Feedback linearization control of chaos synchronization in coupled map-based neurons under external electrical stimulation

  • Hai-Tao Yu
  • Yiu Kwong Wong
  • Wai Lok Chan
  • Kai Ming Tsang
  • Jiang Wang
Regular Papers Control Applications

Abstract

In this paper, the dynamics of single and two electrically coupled map-based neurons under external electrical stimulation is studied. In order to realize the synchronization of two chaotic spiking neurons, a controller based on the idea of feedback linearization is proposed. The simulation results demonstrate the effectiveness of this developed control method. An important feature of the feedback control is that the amplitude of control signal tends to zero as soon as the synchronization is achieved.

Keywords

Chaos synchronization external electrical stimulation feedback linearization control map-based model 

References

  1. [1]
    M. I. Rabinovich, P. Varona, A. I. Selverston, and H. D. I. Abarbanel, “Dynamical principles of neuroscience,” Rev. Mod. Phys., vol. 78, pp. 1213–1265, 2006.CrossRefGoogle Scholar
  2. [2]
    R. C. Elson, A. I. Selverston, R. Huerta, N. F. Rulkov, M. I. Rabinovich, and H. D. I. Abarbanel, “Synchronous behavior of two coupled biological neurons,” Phys. Rev. Lett., vol. 81, pp. 5692–5695, 1998.CrossRefGoogle Scholar
  3. [3]
    A. K. Kryukov, V. S. Petrov, L. S. Averyanova, G. V. Osipov, W. Chen, O. Drugova, and C. K. Chan, “Synchronization phenomena in mixed media of passive, excitable, and oscillatory cells,” Chaos, vol. 18, 037129, 2008.MathSciNetCrossRefGoogle Scholar
  4. [4]
    S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, “The synchronization of chaotic systems,” Physics Reports, vol. 366, pp. 1–101, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    C. M. Gray, P. König, A. K. Engel, and W. Singer, “Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties,” Nature, vol. 338, pp. 334–337, 1989.CrossRefGoogle Scholar
  6. [6]
    R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, and H. J. Reitboeck, “Coherent oscillations: a mechanism of feature linking in the visual cortex? multiple electrode and correlation analyses in the cat,” Biol. Cybern., vol. 60, pp. 121–130, 1988.CrossRefGoogle Scholar
  7. [7]
    W. Singer, “Synchronization of cortical activity and its putative role in information processing and learning,” Annu. Rev. Physiol., vol. 55, pp. 349–374, 1993.CrossRefGoogle Scholar
  8. [8]
    W. A. MacKay, “Synchronized neuronal oscillations and their role in motor processes,” Trends Cogn. Sci., vol. 1, pp. 176–183, 1997.CrossRefGoogle Scholar
  9. [9]
    H. J. Freund, “Motor unit and muscle activity in voluntary motor control,” Physiol Rev., vol. 63, pp. 387–436, 1983.Google Scholar
  10. [10]
    R. Levy, W. D. Hutchison, A. M. Lozano, and J. O. Dostrovsky, “High-frequency synchronization of neuronal activity in the subthalamic nucleus of Parkinsonian patients with limb tremor,” J. Neurosci., vol. 20, pp. 7766–7775, 2000.Google Scholar
  11. [11]
    M. La Rosa, M. I. Rabinovicha, R. Huerta, H. D. I. Abarbanel, and L. Fortuna, “Slow regularization through chaotic oscillation transfer in an unidirectional chain of Hindmarsh-Rose models,” Phys. Lett. A, vol. 266, pp. 88–93, 2000.CrossRefGoogle Scholar
  12. [12]
    M. Dhamala, V. K. Jirsa, and M. Ding, “Enhancement of neural synchrony by time delay,” Phys. Rev. Lett. vol. 92, 074104, 2004.CrossRefGoogle Scholar
  13. [13]
    J. Wang, B. Deng, and K. M. Tsang, “Chaotic synchronization of neurons coupled with gap junction under external electrical stimulation,” Chaos, Solitons and Fractals. vol. 22, pp. 469–476, 2004.zbMATHCrossRefGoogle Scholar
  14. [14]
    Q. Y. Wang, Q. S. Lu, G. R. Chen, and D. H. Guo, “Chaos synchronization of coupled neurons with gap junctions,” Phys. Lett. A, vol. 356, pp. 17–25, 2006.zbMATHCrossRefGoogle Scholar
  15. [15]
    R. C. Elson, A. I. Selverston, R. Huerta, N. F. Rulkov, M. I. Rabinovich, and H. D. I. Abarbanel, “Synchronous behavior of two coupled biological neurons,” Phys. Rev. Lett., vol. 81, pp. 5692–5695, 1999.CrossRefGoogle Scholar
  16. [16]
    Y. Q. Che, J. Wang, S. S. Zhou, and B. Deng, “Robust synchronization control of coupled chaotic neurons under external electrical stimulation,” Chaos, Solitons and Fractals, vol. 40, pp. 1333–1342, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    O. Cornejo-Pérezand and R. Femat, “Unidirectional synchronization of Hodgkin-Huxley neurons,” Chaos, Solitons and Fractals, vol. 25, pp. 43–53, 2005.MathSciNetCrossRefGoogle Scholar
  18. [18]
    J. Wang, B. Deng, and X. Y. Fei, “Synchronizing two coupled chaotic neurons in external electrical stimulation using backstepping control,” Chaos, Solitons and Fractals, vol. 29, pp. 182–189, 2006.CrossRefGoogle Scholar
  19. [19]
    J. Wang, B. Deng, and X. Y. Fei, “Chaotic synchronization of two coupled neurons via nonlinear control in external electrical stimulation,” Chaos, Solitons and Fractals, vol. 27, pp. 1272–1278, 2006.zbMATHCrossRefGoogle Scholar
  20. [20]
    C. A. S. Batista, S. R. Lopes, R. L. Viana, and A. M. Batista, “Delayed feedback control of bursting synchronization in a scale-free neuronal network,” Neural Networks, vol. 23, pp. 114–124, 2010.CrossRefGoogle Scholar
  21. [21]
    O. V. Popovych, C. Hauptmann, and P. A. Tass, “Control of neuronal synchrony by nonlinear delayed feedback,” Biol. Cybern., vol. 95, pp. 69–85, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol., vol. 117, pp. 500–544, 1952.Google Scholar
  23. [23]
    R. FitzHugh, “Mathematical models of threshold phenomena in the nerve membrane,” Bull. Math. Biophysics, vol. 17, pp. 257–278, 1955.CrossRefGoogle Scholar
  24. [24]
    R. M. Rose and J. L. Hindmarsh, “The assembly of ionic currents in a thalamic neuron I. the threedimensional model,” Proc. R. Soc. Lond. B, vol. 237, pp. 267–288, 1989.CrossRefGoogle Scholar
  25. [25]
    N. F. Rulkov, “Regularization of synchronized chaotic bursts,” Phys. Rev. Lett., vol. 86, pp. 183–186 2001CrossRefGoogle Scholar
  26. [26]
    N. F. Rulkov, “Modeling of spiking-bursting neural behavior using two-dimensional map,” Phys. Rev. E, vol. 65, 041922, 2002.MathSciNetCrossRefGoogle Scholar
  27. [27]
    B. Ibarz, J. M. Casado, and M. A. F. Sanjuan, “Map-based models in neuronal dynamics,” Physics Reports, vol. 501, pp. 1–74, 2011.CrossRefGoogle Scholar
  28. [28]
    N. F. Rulkov, I Timofeev, and M. Bazhenov, “Oscillations in large-scale cortical networks: mapbased model,” J. Comput. Neurosci., vol. 17, pp. 203–223, 2004.CrossRefGoogle Scholar
  29. [29]
    M. Bazhenov, N. F. Rulkov, and I. Timofeev, “Effect of synaptic connectivity on long-range synchronization of fast cortical oscillations,” J. Neurophysiolgy, vol. 100, pp. 1562–1575, 2008.CrossRefGoogle Scholar
  30. [30]
    X. Shi and Q. Lu, “Burst synchronization of electrically and chemically coupled map-based neurons,” Physica A, vol. 388, pp. 2410–2419, 2009.CrossRefGoogle Scholar
  31. [31]
    H. Cao and M. A. F. Sanjuán, “A mechanism for elliptic-like bursting and synchronization of bursts in a map-based neuron network,” Cogn. Process., vol. 10, pp. 23–31, 2009.CrossRefGoogle Scholar
  32. [32]
    B. Ibarz, H. Cao, and M. A. F. Sanjuán, “Bursting regimes in map-based neuron models coupled through fast threshold modulation,” Phys. Rev. E, vol. 77, 051918, 2008.MathSciNetCrossRefGoogle Scholar
  33. [33]
    G. Tanaka, B. Ibarz, M. A. F. Sanjuán, and K. Aihara, “Synchronization and propagation of bursts in network of map neurons,” Chaos, vol. 16, 013113, 2006.MathSciNetCrossRefGoogle Scholar
  34. [34]
    B. Ibarz, G. Tanaka, M. A. F. Sanjuán, and K. Aihara, “Sensitivity versus resonance in twodimensional spiking-bursting neuron models,” Phys. Rev. E, vol. 75, 041902, 2007.MathSciNetCrossRefGoogle Scholar
  35. [35]
    M. A. Stuchly and T. W. Dawson, “Interaction of low-frequency electric and magnetic fields with the human body,” Proc. IEEE, vol. 88, pp. 643–664, 2000.CrossRefGoogle Scholar
  36. [36]
    C. F. Blackman, S. G. Benane, D. J. Elliott, D. E. House, and M. M. Pollock, “Influence of electromagnetic fields on the efflux of calcium ions from brain tissue in vitro: a three-model analysis consistent with the frequency response up to 510 Hz,” Bioelectromagnetics, vol. 9, pp. 215–327, 1988.CrossRefGoogle Scholar
  37. [37]
    T. Kotnik, D. Miklavčič, and T. Slivnik, “Time course of transmembrane voltage induced by timevarying electric fields-a method for theoretical analysis and its application,” Bioelectrochem. Bioenerg., vol. 45, pp. 3–16, 1998.CrossRefGoogle Scholar
  38. [38]
    T. Kotnik and D. Miklavcic, “Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields,” Bioelectromagnetics, 2000, vol. 21, pp. 385–394, 2000.CrossRefGoogle Scholar
  39. [39]
    T. Zhang, J. Wang, X. Y. Fei, and B. Deng, “Synchronization of coupled FitzHugh-Nagumo systems via MIMO feedback linearization control,” Chaos, Solitons and Fractals, vol. 33, pp. 194–202, 2007.CrossRefGoogle Scholar
  40. [40]
    C. C. Fuh and H. H. Tsai, “Control of discrete-time chaotic systems via feedback linearization,” Chaos, Solitons and Fractals, vol. 13, pp. 285–294, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    K. Nam, “Linearization of discrete-time nonlinear systems and a canonical structure,” IEEE Trans Automatic Control, vol. 34, pp. 119–122, 1989.MathSciNetCrossRefGoogle Scholar
  42. [42]
    B. Jakubczyk, “Feedback linearization of discretetime systems,” Systems and Control Letters, vol. 9, pp. 411–416, 1987.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • Hai-Tao Yu
    • 1
  • Yiu Kwong Wong
    • 2
  • Wai Lok Chan
    • 2
  • Kai Ming Tsang
    • 2
  • Jiang Wang
    • 1
  1. 1.School of Electrical Engineering and AutomationTianjin UniversityTianjinChina
  2. 2.Department of Electrical EngineeringThe Hong Kong Polytechnic UniversityKowloon, Hong KongChina

Personalised recommendations