Skip to main content

Advertisement

Log in

Application and use of differential scanning calorimetry in studies of thermal fluctuation associated with amyloid fibril formation

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

The aggregation of proteins into amyloid fibrils is a topic that has attracted great interest because the process is associated with the pathology of numerous human diseases. Despite considerable progress in the elucidation of the structure of amyloid fibrils and the kinetic mechanism of their formation, knowledge on the thermodynamic aspects underlying the formation and stability of amyloid fibrils is limited. In this review, we summarize recent calorimetric studies of amyloid fibril formation, with the goal of obtaining a better understanding of the causal factors that thermally induce proteins to aggregate into amyloid fibrils. Calorimetric data show that differential scanning calorimetry is a useful technique to study the causative factors that thermally trigger the conversion to the amyloid structure and highlight the physics related to the thermal fluctuation of proteins during this conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arai M, Kuwajima K (2000) Role of the molten globule state in protein folding. Adv Protein Chem 53:209–282

    Article  PubMed  CAS  Google Scholar 

  • Attanasio F, Cataldo S, Fisichella S, Nicoletti S, Nicoletti VG, Pignataro B, Savarino A, Rizzarelli E (2009) Protective effects of L-and D-carnosine on α-crystallin amyloid fibril formation: implication for cataract disease. Biochemistry 48:6522–6531

    Article  PubMed  CAS  Google Scholar 

  • Azuaga AI, Dobson CM, Mateo PL, Conejero-Lara F (2002) Unfolding and aggregation during the thermal denaturation of streptokinase. Eur J Biochem 269:4121–4133

    Article  PubMed  CAS  Google Scholar 

  • Bader R, Bamford R, Zurdo J, Luisi BF, Dobson CM (2006) Probing the mechanism of amyloidogenesis through a tandem repeat of the PI3-SH3 domain suggests a generic model for protein aggregation and fibril formation. J Mol Biol 356:189–208

    Article  PubMed  CAS  Google Scholar 

  • Baldwin RL (1986) Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci USA 83:8069–8072

    Article  PubMed  CAS  Google Scholar 

  • Baldwin RL (2008) The search for folding intermediates and the mechanism of protein folding. Annu Rev Biophys 37:1–21

    Article  PubMed  CAS  Google Scholar 

  • Baxa U, Ross PD, Wickner RB, Steven AC (2004) The N-terminal prion domain of Ure2p converts from an unfolded to a thermally resistant conformation upon filament formation. J Mol Biol 339:259–264

    Article  PubMed  CAS  Google Scholar 

  • Bhak G, Choe Y-J, Paik SR (2009) Mechanism of amyloidogenesis: nucleation-dependent fibrillation versus double-concerted fibrillation. BMB Rep 42:541–551

    Article  PubMed  CAS  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329:506–512

    Article  PubMed  CAS  Google Scholar 

  • Bowerman CJ, Nilsson BL (2012) Self-assembly of amphipathic β-sheet peptides: insights and applications. Biopolymers 98:169–184

    Article  PubMed  CAS  Google Scholar 

  • Broome BM, Hecht MH (2000) Nature disfavors sequences of alternating polar and non-polar amino acids: implications for amyloidogenesis. J Mol Biol 296:961–968

    Article  PubMed  CAS  Google Scholar 

  • Cabrita LD, Dobson CM, Christodoulou J (2010) Protein folding on the ribosome. Curr Opin Struct Biol 20:33–45

    Article  PubMed  CAS  Google Scholar 

  • Carrotta R, Manno M, Bulone D, Martorana V, San Biagio PL (2005) Protofibril formation of amyloid β-protein at low pH via a non-cooperative elongation mechanism. J Biol Chem 280:30001–30008

    Article  PubMed  CAS  Google Scholar 

  • Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    Article  PubMed  CAS  Google Scholar 

  • Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647

    Article  PubMed  CAS  Google Scholar 

  • Chatani E, Goto Y (2005) Structural stability of amyloid fibrils of β2-microglobulin in comparison with its native fold. Biochim Biophys Acta 1753:64–75

    Article  PubMed  CAS  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  PubMed  CAS  Google Scholar 

  • Chiu MH, Prenner EJ (2011) Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallied Sci 3:39–59

    Article  PubMed  CAS  Google Scholar 

  • Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) The protein folding problem. Annu Rev Biophys 37:289–316

    Article  PubMed  CAS  Google Scholar 

  • Dzwolak W, Ravindra R, Lendermann J, Winter R (2003) Aggregation of bovine insulin probed by DSC/PPC calorimetry and FTIR spectroscopy. Biochemistry 42:11347–11355

    Article  PubMed  CAS  Google Scholar 

  • Eichner T, Radford SE (2011a) A diversity of assembly mechanisms of a generic amyloid folds. Mol Cell 43:8–18

    Article  PubMed  CAS  Google Scholar 

  • Eichner T, Radford SE (2011b) Understanding the complex mechanisms of β2-microglobulin amyloid assembly. FEBS J 278:3868–3883

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148:1188–1203

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, Minton AP (2006) Protein aggregation in crowded environments. Biol Chem 387:485–497

    Article  PubMed  CAS  Google Scholar 

  • Fändrich M, Dobson CM (2002) The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J 21:5682–5690

    Article  PubMed  Google Scholar 

  • Fändrich M, Meinhardt J, Grigorieff N (2009) Structural polymorphism of Alzheimer Aβ and other amyloid fibrils. Prion 3:89–93

    Article  PubMed  Google Scholar 

  • Fersht AR (2008) From the first protein structures to our current knowledge of protein folding: delights and scepticisms. Nat Rev Mol Cell Biol 9:650–654

    Article  PubMed  CAS  Google Scholar 

  • Freire E (1995) Differential scanning calorimetry. Methods Mol Biol 40:191–218

    PubMed  CAS  Google Scholar 

  • Gill P, Mogbadam TT, Ranjbar B (2010) Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biom Tech 21:167–193

    Google Scholar 

  • Glenner GG, Eanes ED, Bladen HA, Linke RP, Termine JD (1974) β-pleated sheet fibrils. A comparison of native amyloid with synthetic protein fibrils. J Histochem Cytochem 22:1141–1158

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt L, Teng PK, Reik R, Eisenberg D (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci USA 107:3487–3492

    Article  PubMed  CAS  Google Scholar 

  • Gosal WS, Morten IJ, Hewitt EW, Smith DA, Thomson NN, Radford SE (2005) Competing pathways determine fibril morphology in the self-assembly of β2-microglobulin into amyloid. J Mol Biol 351:850–864

    Article  PubMed  CAS  Google Scholar 

  • Goto Y, Yagi H, Yamaguchi K, Chatani E, Ban T (2008) Structure, formation and propagation of amyloid fibrils. Curr Pharm Des 14:3205–3218

    Article  PubMed  CAS  Google Scholar 

  • Hamley IW (2007) Peptide fibrillization. Angew Chem Int Ed 46:8128–8147

    Article  CAS  Google Scholar 

  • Harper JD, Lansbury PT (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407

    Article  PubMed  CAS  Google Scholar 

  • Hecht MH, Das A, Go A, Gradley L, Wei Y (2004) Do novo proteins from designed combinatorial libraries. Protein Sci 13:1711–1723

    Article  PubMed  CAS  Google Scholar 

  • Hong D-P, Gozu M, Hasegawa K, Naiki H, Goto Y (2002) Conformation of β2-microglobulin amyloid fibrils analyzed by reduction of the disulfide bond. J Biol Chem 277:21554–21560

    Article  PubMed  CAS  Google Scholar 

  • Hurshman AR, White JT, Powers ET, Kelly JW (2004) Transthyretin aggregation under partially denaturing conditions is a downhill polymerization. Biochemistry 43:7365–7381

    Article  PubMed  CAS  Google Scholar 

  • Israelachvili J, Wennerström H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379:219–225

    Article  PubMed  CAS  Google Scholar 

  • Jahn TR, Radford SE (2008) Folding versus aggregation: polypeptide conformations on competing pathways. Arch Biochem Biophys 469:100–117

    Article  PubMed  CAS  Google Scholar 

  • Jahn TR, Makin OS, Morris KL, Marshall KE, Tian P, Sikorski P, Serpell LC (2010) The common architecture of cross-β amyloid. J Mol Biol 395:717–727

    Article  PubMed  CAS  Google Scholar 

  • Kardos J, Yamamoto K, Hasegawa K, Naiki H, Goto Y (2004) Direct measurement of the thermodynamic parameters of amyloid formation by isothermal titration calorimetry. J Biol Chem 279:55308–55314

    Article  PubMed  CAS  Google Scholar 

  • Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63

    Article  PubMed  CAS  Google Scholar 

  • Kirschner DA, Inouye H, Duffy LK, Sinclair A, Lind M, Selkoe DJ (1987) Synthetic peptide homologous to β protein from Alzheimer disease forms amyloid-like fibrils in vivo. Proc Natl Acad Sci USA 84:6953–6957

    Article  PubMed  CAS  Google Scholar 

  • Kodali R, Wetzel R (2007) Polymorphism in the intermediates and products of amyloid assembly. Curr Opin Struct Biol 17:48–57

    Article  PubMed  CAS  Google Scholar 

  • Kreplak L, Aebi U (2006) From the polymorphism of amyloid fibrils to their assembly mechanism and cytotoxicity. 73:217−233

  • Lee Y-H, Chatani E, Sasahara K, Naiki H, Goto Y (2009) A comprehensive model for packing and hydration for amyloid fibrils of β2-microglobulin. J Biol Chem 284:2169–2175

    Article  PubMed  CAS  Google Scholar 

  • Lindorff-Larsen K, Røgen P, Paci E, Vendruscolo M, Dobson CM (2005) Protein folding and the organization of the protein topology universe. Trends Biochem Sci 30:13–19

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Yang C, Guo Q-X (2000) A study on the enthalpy–entropy compensation in protein unfolding. Biophys Chem 84:239–251

    Article  PubMed  CAS  Google Scholar 

  • Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB (1996) On the nucleation and growth of amyloid β-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci USA 93:1125–1129

    Article  PubMed  CAS  Google Scholar 

  • Lumry R, Eyring H (1954) Conformation changes of proteins. J Phys Chem 58:110–120

    Article  CAS  Google Scholar 

  • Lumry R, Rajender S (1970) Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers 9:1125–1227

    Article  PubMed  CAS  Google Scholar 

  • Maggio JE, Mantyh PW (1996) Brain amyloid–a physicochemical perspective. Brain Pathol 6:147–162

    Article  PubMed  CAS  Google Scholar 

  • Makhatadze GI, Privalov PL (1995) Energetics of protein structure. Adv Protein Chem 47:307–425

    Article  PubMed  CAS  Google Scholar 

  • Makin OS, Serpell LC (2005) Structures for amyloid fibrils. FEBS J 272:5950–5961

    Article  PubMed  CAS  Google Scholar 

  • Mandel-Gutfreund Y, Gregoret LM (2002) On the significance of alternating patterns of polar and non-polar residues in beta-strands. J Mol Biol 323:453–461

    Article  PubMed  CAS  Google Scholar 

  • Michnik A, Drzazga Z, Kluczewska A, Michalik K (2005) Differential scanning microcalorimetry study of the thermal denaturation of haemoglobin. Biophys Chem 118:93–101

    Article  PubMed  CAS  Google Scholar 

  • Modler AJ, Gast K, Lutsch G, Damaschun G (2003) Assembly of amyloid protofibrils via critical oligomers–a novel pathway of amyloid formation. J Mol Biol 325:135–148

    Article  PubMed  CAS  Google Scholar 

  • Morel B, Casares S, Conejero-Lara F (2006) A single mutation induces amyloid aggregation in the α-spectrin SH3 domain: analysis of the early stages of fibril formation. J Mol Biol 356:453–468

    Article  PubMed  CAS  Google Scholar 

  • Morel B, Varela L, Conejero-Lara F (2010) The thermodynamic stability of amyloid fibrils studied by differential scanning calorimetry. J Phys Chem B 114:4010–4019

    Article  PubMed  CAS  Google Scholar 

  • Murciano-Calles J, Cobos ES, Mateo PL, Camara-Artigas A, Martinez JC (2010) An oligomeric equilibrium intermediate as the precursory nucleus of globular and fibrillar supramacromolecular assemblies in a PDZ domain. Biophys J 99:263–272

    Article  PubMed  CAS  Google Scholar 

  • Naiki H, Hashimoto N, Suzuki S, Kimura H, Nakakuki K, Gejyo F (1997) Establishment of a kinetic model of dialysis-related amyloid fibril extension in vitro. Amyloid 4:223–232

    Article  CAS  Google Scholar 

  • Nelson R, Eisenberg D (2006) Structural models of amyloid-like fibrils. Adv Protein Chem 73:235–282

    Article  PubMed  CAS  Google Scholar 

  • Pedersen J, Andersen CB, Otzen DE (2010) Amyloid structure–one but not the same: the many levels of fibrillar polymorphism. FEBS J 277:4591–4601

    Article  PubMed  CAS  Google Scholar 

  • Privalov PL, Dragan AI (2007) Microcalorimetry of biological macromolecules. Biophys Chem 126:16–24

    Article  PubMed  CAS  Google Scholar 

  • Radford SE, Gosal WS, Platt GW (2005) Towards an understanding of the structural molecular mechanism of β2-microglobulin amyloid formation in vitro. Biochim Biophys Acta 1753:51–63

    Article  PubMed  CAS  Google Scholar 

  • Raman B, Chatani E, Kihara M, Ban T, Sakai M, Hasegawa K, Naiki H, Rao CM, Goto Y (2005) Critical balance of electrostatic and hydrophobic interactions is required for β2-microglobulin amyloid fibril growth and stability. Biochemistry 44:1288–1299

    Article  PubMed  CAS  Google Scholar 

  • Rezaei H, Choiset Y, Eghiaian F, Treguer E, Mentre P, Debey P, Grosclaude J, Haertle T (2002) Amyloidogenic unfolding intermediates differentiate sheep prion protein variants. J Mol Biol 322:799–814

    Article  PubMed  CAS  Google Scholar 

  • Robertson AD, Murphy KP (1997) Protein structure and the energetics of protein stability. Chem Rev 97:1251–1267

    Article  PubMed  CAS  Google Scholar 

  • Roychaudhuri R, Yang M, Hoshi MM, Teplow DB (2009) Amyloid β-protein assembly and Alzheimer disease. J Biol Chem 284:4749–4753

    Article  PubMed  CAS  Google Scholar 

  • Saiki M, Honda S, Kawasaki K, Zhou D, Kaito A, Konakahara T, Morii H (2005) Higher-order molecular packing in amyloid-like fibrils constructed with linear arrangements of hydrophobic and hydrogen-bonding side-chains. J Mol Biol 348:983–998

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ruiz JM (1995) Differential scanning calorimetry of proteins. Subcell Biochem 24:133–176

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ruiz JM, Lopez-Lacomba JL, Cortijo M, Mateo PL (1988) Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry 27:1648–1652

    Article  PubMed  CAS  Google Scholar 

  • Sasahara K, Naiki H, Goto Y (2005) Kinetically controlled thermal response of β2-microglobulin amyloid fibrils. J Mol Biol 352:700–711

    Article  PubMed  CAS  Google Scholar 

  • Sasahara K, Naiki H, Goto Y (2006) Exothermic effects observed upon heating of β2-microglobulin monomers in the presence of amyloid seeds. Biochemistry 45:8760–8769

    Article  PubMed  CAS  Google Scholar 

  • Sasahara K, Yagi H, Naik H, Goto Y (2007a) Heat-triggered conversion of protofibrils into mature amyloid fibrils of β2-microglobulin. Biochemistry 46:3286–3293

    Article  PubMed  CAS  Google Scholar 

  • Sasahara K, Yagi H, Naiki H, Goto Y (2007b) Heat-induced conversion of β2-microglobulin and hen egg-white lysozyme into amyloid fibrils. J Mol Biol 372:981–991

    Article  PubMed  CAS  Google Scholar 

  • Sasahara K, Yagi H, Sakai M, Naiki H, Goto Y (2008) Amyloid nucleation triggered by agitation of β2-microglobulin under acidic and neutral pH conditions. Biochemistry 47:2650–2660

    Article  PubMed  CAS  Google Scholar 

  • Sasahara K, Yagi H, Naiki H, Goto Y (2009) Thermal response with exothermic effects of β2-microglobulin amyloid fibrils and fibrillation. J Mol Biol 389:584–594

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426:900–904

    Article  PubMed  CAS  Google Scholar 

  • Sipe JD, Cohen AS (2000) Review: history of the amyloid fibril. J Struct Biol 130:88–98

    Article  PubMed  CAS  Google Scholar 

  • Spink CH (2008) Differential scanning calorimetry. Methods Cell Biol 84:115–141

    Article  PubMed  CAS  Google Scholar 

  • Stefani M (2004) Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim Biophys Acta 1739:5–25

    Article  PubMed  CAS  Google Scholar 

  • Stirpe A, Rizzuti B, Pantusa M, Bartucci R, Sportelli L, Guzzi R (2008) Thermally induced denaturation and aggregation of BLG-A: effect of the Cu2+ and Zn2+ metal ions. Eur Biophys J 37:1351–1360

    Article  PubMed  CAS  Google Scholar 

  • Stoppini M, Mangione P, Monti M, Giorgetti S, Marchese L, Arcidiaco P, Verga L, Segagni S, Pucci P, Merlini G, Bellotti V (2005) Proteomics of β2-microglobulin amyloid fibrils. Biochim Biophys Acta 1753:23–33

    Article  PubMed  CAS  Google Scholar 

  • Sturtevant J (1987) Biochemical applications of differential scanning calorimetry. Annu Rev Phys Chem 38:463–488

    Article  CAS  Google Scholar 

  • Sunde M, Blake C (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem 50:123−159

    Google Scholar 

  • Tanford C (1978) The hydrophobic effect and the organization of living matter. Science 200:1012–1018

    Article  PubMed  CAS  Google Scholar 

  • Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:279–299

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN (2010) Mysterious oligomarization of the amyloidogenic proteins. FEBS J 277:2940–2953

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta 1698:131–153

    Article  PubMed  CAS  Google Scholar 

  • Weijers M, Barneveld PA, Cohen Stuart MA, Visschers RW (2003) Heat-induced denaturation and aggregation of ovalbumin at neutral pH described by irreversible first-order kinetics. Protein Sci 12:2693–2703

    Article  PubMed  CAS  Google Scholar 

  • Wetzel R (2006) Kinetics and thermodynamics of amyloid fibril assembly. Acc Chem Res 39:671–679

    Article  PubMed  CAS  Google Scholar 

  • Xue W-F, Homans SW, Radford SE (2008) Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci USA 105:8926–8931

    Article  PubMed  CAS  Google Scholar 

  • Yagi H, Kusaka E, Hongo K, Mizobata T, Kawata Y (2005) Amyloid fibril formation of α-synuclein is accelerated by preformed amyloid seeds of other proteins: implications for the mechanism of transmissible conformational diseases. J Biol Chem 280:38609–38616

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Gejyo F (2005) Historical background and clinical treatment of dialysis-related amyloidosis. Biochim Biophys Acta 1753:4–10

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Sasahara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasahara, K., Goto, Y. Application and use of differential scanning calorimetry in studies of thermal fluctuation associated with amyloid fibril formation. Biophys Rev 5, 259–269 (2013). https://doi.org/10.1007/s12551-012-0098-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-012-0098-3

Keywords

Navigation