Skip to main content

Single-Molecule Studies of Amyloidogenic Proteins

  • Chapter
  • First Online:
Single-molecule Studies of Proteins

Abstract

Single-molecule biophysical tools have developed in the past two decades from jaw-dropping attractions to essential laboratory tools. In recent years, these methods have been applied to the exploration of the structure, mechanics, and mechanically driven conformational changes of amyloidogenic protein systems as well. Amyloidogenic proteins are a rich and diverse group of molecules capable of forming amyloid fibrils, and many of them are implicated in severe degenerative diseases. Because many of the diseases cause not only health problems but societal burden as well, experimental research aiming at obtaining quicker and more precise diagnosis, a better understanding of the molecular mechanisms, and more efficient therapies has ever been intensifying. In spite of seeing greater structural detail in amyloid fibrils, the intrafibrillar dynamics, the nature of the structural changes related to the amyloidogenic transition, and the role that mechanical properties might play are still not understood well. Single-molecule methods offer a unique insight into the behavior of amyloidogenic proteins and amyloid fibrils. This chapter focuses primarily on single-molecule mechanics approaches. Single-molecule methods are described and the adaptation of the techniques in the investigation of a number of amyloidogenic systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlard PA, Cummings BJ (2004) Alzheimer’s disease - a sum greater than its parts? Neurobiol Aging 25:725–733

    PubMed  CAS  Google Scholar 

  • Almeida MR, Macedo B et al (2004) Selective binding to transthyretin and tetramer stabilization in serum from patients with familial amyloidotic polyneuropathy by an iodinated diflunisal derivative. Biochem J 381(2):351–356

    PubMed  CAS  Google Scholar 

  • Alzheimer A (1907) Uber eine eigneartige Erkrankung der Hirnrinde. Centralblatt fur Nervenheilkunde und Psychiatrie 30:177–179

    Google Scholar 

  • Ambrose WP, Moerner WE (1991) Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal. Nature 349:225–227

    CAS  Google Scholar 

  • Ashkin A (1980) Application of laser radiation pressure. Science 210:1081–1088

    PubMed  CAS  Google Scholar 

  • Ashkin A, Dziedzic JM et al (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 330:769–771

    PubMed  CAS  Google Scholar 

  • Ashkin A, Schutze K et al (1990) Force generation of organelle transport measured in vivo by an infrared laser trap. Nature 348(6299):346–348

    PubMed  CAS  Google Scholar 

  • Axelrod D (1989) Total internal reflection fluorescence microscopy. Methods Cell Biol 30:245–270

    PubMed  CAS  Google Scholar 

  • Axelrod D (2003) Total internal reflection fluorescence microscopy in cell biology. Methods Enzymol 361:1–33

    PubMed  CAS  Google Scholar 

  • Axelrod D, Burghardt TP et al (1984) Total internal reflection fluorescence. Annu Rev Biophys Bioeng 13:247–268

    PubMed  CAS  Google Scholar 

  • Ballard C, Gauthier S et al (2011) Alzheimer’s disease. Lancet 377(9770):1019–1031

    PubMed  Google Scholar 

  • Ban T, Hamada D et al (2003) Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J Biol Chem 278(19):16462–16465

    PubMed  CAS  Google Scholar 

  • Ban T, Hoshino M et al (2004) Direct observation of abeta amyloid fibril growth and inhibition. J Mol Biol 344(3):757–767

    PubMed  CAS  Google Scholar 

  • Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618–627

    PubMed  CAS  Google Scholar 

  • Bellotti V, Mangione P et al (2000) Review: immunoglobulin light chain amyloidosis–the archetype of structural and pathogenic variability. J Struct Biol 130(2–3):280–289

    PubMed  CAS  Google Scholar 

  • Bertoncini CW, Celej MS (2011) Small molecule fluorescent probes for the detection of amyloid self-assembly in vitro and in vivo. Curr Protein Pept Sci 12(3):205–220

    PubMed  Google Scholar 

  • Best RB, Brockwell DJ et al (2003) Force mode atomic force microscopy as a tool for protein folding studies. Anal Chim Acta 479:87–105

    CAS  Google Scholar 

  • Betzig E, Chichester RJ (1993) Single molecules observed by near-field scanning optical microscopy. Science 262:1422–1425

    PubMed  CAS  Google Scholar 

  • Biancalana M, Koide S (2010) Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 1804(7):1405–1412

    PubMed  CAS  Google Scholar 

  • Biancalana M, Makabe K et al (2009) Molecular mechanism of thioflavin-T binding to the surface of beta-rich peptide self-assemblies. J Mol Biol 385(4):1052–1063

    PubMed  CAS  Google Scholar 

  • Bianco P, Nagy A et al (2007) Interaction forces between F-actin and titin PEVK domain measured with optical tweezers. Biophys J 93(6):2102–2109

    PubMed  CAS  Google Scholar 

  • Binnig G, Quate CF et al (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    PubMed  Google Scholar 

  • Björkman PJ, Saper MA et al (1987) Structure of the human class I histocompatibility antigen HLA-A2. Nature 329:506–512

    PubMed  Google Scholar 

  • Blanco LP, Evans ML et al (2012) Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 20(2):66–73

    PubMed  CAS  Google Scholar 

  • Brigatti MF, Guggenheim S et al (2003) Crystal chemistry of the 1M mica polytype: the octahedral sheet. Am Mineral 88:667–675

    CAS  Google Scholar 

  • Bustamante C, Marko JF et al (1994) Entropic elasticity of lambda-phage DNA. Science 265(5178):1599–1600

    PubMed  CAS  Google Scholar 

  • Bustamante C, Macosko JC et al (2000a) Grabbing the cat by the tail: manipulating molecules one by one. Nat Rev Mol Cell Biol 1(2):130–136

    PubMed  CAS  Google Scholar 

  • Bustamante C, Smith SB et al (2000b) Single-molecule studies of DNA mechanics. Curr Opin Struct Biol 10(3):279–285

    PubMed  CAS  Google Scholar 

  • Buxbaum JN (2003) The systemic amyloidoses. Curr Opin Rheumatol 16:67–75

    Google Scholar 

  • Cardoso I, Saraiva MJ (2005) Doxycycline disrupts transthyretin amyloid: evidence from studies in a FAP transgenic mice model. FASEB J 20:234–239

    Google Scholar 

  • Cardoso I, Goldsbury CS et al (2002) Transthyretin fibrillogenesis entails the assembly of monomers: a molecular model for in vitro assembled transthyretin amyloid-like fibrils. J Mol Biol 317(5):683–695

    PubMed  CAS  Google Scholar 

  • Carrion-Vazquez M, Oberhauser AF et al (2000) Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog Biophys Mol Biol 74(1–2):63–91

    PubMed  CAS  Google Scholar 

  • Castellani RJ, Rolston RK et al (2010) Alzheimer disease. Dis Mon 56(9):484–546

    PubMed  Google Scholar 

  • Castro CE, Dong J et al (2011) Physical properties of polymorphic yeast prion amyloid fibers. Biophys J 101(2):439–448

    PubMed  CAS  Google Scholar 

  • Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351(1):56–67

    PubMed  CAS  Google Scholar 

  • Damas AM, Saraiva MJ (2000) Review: TTR amyloidosis-structural features leading to protein aggregation and their implications on therapeutic strategies. J Struct Biol 130:290–299

    PubMed  CAS  Google Scholar 

  • Damas AM, Saraiva MJ (2005) Transthyretin. In: Sipe JD (ed) Amyloid proteins: the beta sheet conformation and disease. Wiley, New York, pp 571–583

    Google Scholar 

  • del Mar Martinez-Senac M, Villalain J et al (1999) Structure of the Alzheimer β-amyloid peptide (25-35) and its interaction with negatively charged phospholipid vesicles. Eur J Biochem 265:744–753

    PubMed  Google Scholar 

  • del Mercato LL, Maruccio G et al (2008) Amyloid-like fibrils in elastin-related polypeptides: structural characterization and elastic properties. Biomacromolecules 9(3):796–803

    PubMed  Google Scholar 

  • Deniz AA, Dahan M et al (1999) Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Forster distance dependence and subpopulations. Proc Natl Acad Sci USA 96(7):3670–3675

    PubMed  CAS  Google Scholar 

  • Dickson RM, Cubitt AB et al (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388(6640):355–358

    PubMed  CAS  Google Scholar 

  • Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24(9):329–332

    PubMed  CAS  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426:884–889

    PubMed  CAS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  • Dong M, Hovgaard MB et al (2008) AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon. Nanotechnology 19(38):384013

    PubMed  Google Scholar 

  • Dong J, Castro CE et al (2010) Optical trapping with high forces reveals unexpected behaviors of prion fibrils. Nat Struct Mol Biol 17(12):1422–1430

    PubMed  CAS  Google Scholar 

  • Eakin CM, Miranker AD (2005) From chance to frequent encounters: origins of ß2-microglobulin fibrillogenesis. Biochim Biophys Acta 1753:92–99

    PubMed  CAS  Google Scholar 

  • Eakin CM, Berman AJ et al (2006) A native to amyloidogenic transition regulated by a backbone trigger. Nat Struct Mol Biol 13(3):202–208

    PubMed  CAS  Google Scholar 

  • Eichner T, Radford SE (2011) Understanding the complex mechanisms of beta2-microglobulin amyloid assembly. FEBS J 278(20):3868–3883

    PubMed  CAS  Google Scholar 

  • Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148(6):1188–1203

    PubMed  CAS  Google Scholar 

  • Evans E (2001) Probing the relation between force–lifetime–and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct 30:105–128

    PubMed  CAS  Google Scholar 

  • Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72(4):1541–1555

    PubMed  CAS  Google Scholar 

  • Falk RH, Comenzo RL et al (1997) The systemic amyloidoses. New Eng J Med 337:898–909

    PubMed  CAS  Google Scholar 

  • Fandrich M (2012) Oligomeric intermediates in amyloid formation: structure determination and mechanisms of toxicity. J Mol Biol 421(4–5):427–40

    PubMed  Google Scholar 

  • Fandrich M, Fletcher MA et al (2001) Amyloid fibrils from muscle myoglobin. Nature 410:165–166

    PubMed  CAS  Google Scholar 

  • Fernandez JM, Li H (2004) Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303(5664):1674–1678

    PubMed  CAS  Google Scholar 

  • Fisher TE, Oberhauser AF et al (1999) The study of protein mechanics with the atomic force microscope. Trends Biochem Sci 24(10):379–384

    PubMed  CAS  Google Scholar 

  • Florin EL, Moy VT et al (1994) Adhesion forces between individual ligand-receptor pairs. Science 264(5157):415–417

    PubMed  CAS  Google Scholar 

  • Forloni G, Chiesa R et al (1993) Apoptosis mediated neurotoxicity induced by chronic application of beta amyloid fragment 25-35. Neuroreport 4(5):523–526

    PubMed  CAS  Google Scholar 

  • Franzini M (1969) The A and B mica layers and the crystal structure of sheet silicates. Contr Mineral Petrol 21:203–224

    CAS  Google Scholar 

  • Friedman R (2011) Aggregation of amyloids in a cellular context: modelling and experiment. Biochem J 438(3):415–426

    PubMed  CAS  Google Scholar 

  • Ganchev DN, Cobb NJ et al (2008) Nanomechanical properties of human prion protein amyloid as probed by force spectroscopy. Biophys J 95(6):2909–2915

    PubMed  CAS  Google Scholar 

  • Garcia-Saez AJ, Schwille P (2007) Single molecule techniques for the study of membrane proteins. Appl Microbiol Biotechnol 76(2):257–266

    PubMed  CAS  Google Scholar 

  • Giese RFJ (1979) Hydroxyl orientations in 2:1 phyllosilicates. Clays Clay Miner 27(3):213–223

    CAS  Google Scholar 

  • Gimzewski JK, Joachim C (1999) Nanoscale science of single molecules using local probes. Science 283(5408):1683–1688

    PubMed  CAS  Google Scholar 

  • Gordon MP, Ha T et al (2004) Single-molecule high-resolution imaging with photobleaching. Proc Natl Acad Sci USA 101(17):6462–6465

    PubMed  CAS  Google Scholar 

  • Gorelik J, Shevchuk A et al (2002) Scanning surface confocal microscopy for simultaneous topographical and fluorescence imaging: application to single virus-like particle entry into a cell. Proc Natl Acad Sci USA 99(25):16018–16023

    PubMed  CAS  Google Scholar 

  • Greenwald J, Riek R (2010) Biology of amyloid: structure, function, and regulation. Structure 18(10):1244–1260

    PubMed  CAS  Google Scholar 

  • Ha T, Enderle T et al (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci USA 93(13):6264–6268

    PubMed  CAS  Google Scholar 

  • Ha T, Ting AY et al (1999) Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. Proc Natl Acad Sci USA 96(3):893–898

    PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–3556

    PubMed  CAS  Google Scholar 

  • Harper JD, Wong SS et al (1997) Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem Biol 4(2):119–125

    PubMed  CAS  Google Scholar 

  • Harriman OL, Leake MC (2011) Single molecule experimentation in biological physics: exploring the living component of soft condensed matter one molecule at a time. J Phys Condens Matter 23(50):503101

    PubMed  CAS  Google Scholar 

  • Hawkins PN, Myers MJ et al (1988) Diagnostic radionuclide imaging of amyloid: biological targeting by circulating human serum amyloid P component. Lancet 1(8600):1413–1418

    PubMed  CAS  Google Scholar 

  • Huang B, Bates M et al (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016

    PubMed  CAS  Google Scholar 

  • Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64(7):1868–1873

    CAS  Google Scholar 

  • Ionescu-Zanetti C, Khurana R et al (1999) Monitoring the assembly of Ig light-chain amyloid fibrils by atomic force microscopy. Proc Natl Acad Sci USA 96(23):13175–13179

    PubMed  CAS  Google Scholar 

  • Ishii Y, Yanagida T (2000) Single molecule detection in life science. Single Mol 1:5–13

    CAS  Google Scholar 

  • Ishii Y, Ishijima A et al (2001) Single molecule nanomanipulation of biomolecules. Trends Biotechnol 19(6):211–216

    PubMed  CAS  Google Scholar 

  • Jacobson DR, McFarlin DE et al (1992) Transthyretin Pro55, a variant associated with early-onset, aggressive, diffuse amyloidosis with cardiac and neurologic involvement. Hum Genet 89:353–356

    PubMed  CAS  Google Scholar 

  • Kad NM, Thomson NH et al (2001) Beta(2)-microglobulin and its deamidated variant, N17D form amyloid fibrils with a range of morphologies in vitro. J Mol Biol 313(3):559–571

    PubMed  CAS  Google Scholar 

  • Kad NM, Myers SL et al (2003) Hierarchical assembly of beta2-microglobulin amyloid in vitro revealed by atomic force microscopy. J Mol Biol 330(4):785–797

    PubMed  CAS  Google Scholar 

  • Kapanidis AN, Weiss S (2002) Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. J Chem Phys 117:10953–10964

    CAS  Google Scholar 

  • Kardos J, Yamamoto K et al (2004) Direct measurement of the thermodynamic parameters of amyloid formation by isothermal titration calorimetry. J Biol Chem 279(53):55308–55314

    PubMed  CAS  Google Scholar 

  • Kardos J, Okuno D et al (2005) Structural studies reveal that the diverse morphology of ß2-microglobulin aggregates is a reflection of different molecular architectures. Biochim Biophys Acta 1753:108–120

    PubMed  CAS  Google Scholar 

  • Karsai Á, Nagy A et al (2005) Effect of lysine-28 side-chain acetylation on the nanomechanical behavior of alzheimer amyloid beta25-35 fibrils. J Chem Inf Model 45(6):1641–1646

    PubMed  CAS  Google Scholar 

  • Karsai Á, Martonfalvi Z et al (2006) Mechanical manipulation of Alzheimer’s amyloid beta1-42 fibrils. J Struct Biol 155(2):316–326

    PubMed  CAS  Google Scholar 

  • Karsai Á, Grama L et al (2007) Potassium-dependent oriented growth of amyloid ß25-35 fibrils on mica. Nanotechnology 18:345102

    Google Scholar 

  • Kellermayer MSZ (2005) Visualizing and manipulating individual protein molecules. Physiol Meas 26:R119–R153

    PubMed  Google Scholar 

  • Kellermayer MS, Grama L (2002) Stretching and visualizing titin molecules: combining structure, dynamics and mechanics. J Muscle Res Cell Motil 23(5–6):499–511

    PubMed  Google Scholar 

  • Kellermayer MS, Smith SB et al (1997) Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276(5315):1112–1116

    PubMed  CAS  Google Scholar 

  • Kellermayer MS, Smith SB et al (2001) Mechanical fatigue in repetitively stretched single molecules of titin. Biophys J 80(2):852–863

    PubMed  CAS  Google Scholar 

  • Kellermayer MS, Bustamante C et al (2003) Mechanics and structure of titin oligomers explored with atomic force microscopy. Biochim Biophys Acta 1604(2):105–114

    PubMed  CAS  Google Scholar 

  • Kellermayer MS, Grama L et al (2005) Reversible mechanical unzipping of amyloid beta-fibrils. J Biol Chem 280(9):8464–8470

    PubMed  CAS  Google Scholar 

  • Kellermayer MS, Karsai Á et al (2006) Spatially and temporally synchronized atomic force and total internal reflection fluorescence microscopy for imaging and manipulating cells and biomolecules. Biophys J 91(7):2665–2677

    PubMed  CAS  Google Scholar 

  • Kellermayer MS, Karsai Á et al (2008) Stepwise dynamics of epitaxially growing single amyloid fibrils. Proc Natl Acad Sci USA 105(1):141–144

    PubMed  CAS  Google Scholar 

  • Khurana R, Ionescu-Zanetti C et al (2003) A general model for amyloid fibril assembly based on morphological studies using atomic force microscopy. Biophys J 85(2):1135–1144

    PubMed  CAS  Google Scholar 

  • Kimura Y, Bianco PR (2006) Single molecule studies of DNA binding proteins using optical tweezers. Analyst 131(8):868–874

    PubMed  CAS  Google Scholar 

  • Klar TA, Jakobs S et al (2000) Fluorescence microscopy with diffraction resolution broken by stimulated emission. Proc Natl Acad Sci USA 97:8206–8210

    PubMed  CAS  Google Scholar 

  • Kowalewski T, Holtzman DM (1999) In situ atomic force microscopy study of Alzheimer’s beta-amyloid peptide on different substrates: new insights into mechanism of beta-sheet formation. Proc Natl Acad Sci USA 96(7):3688–3693

    PubMed  CAS  Google Scholar 

  • Lacoste TD, Michalet X et al (2000) Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc Natl Acad Sci USA 97(17):9461–9466

    PubMed  CAS  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York, NY

    Google Scholar 

  • LeVine H 3rd (1993) Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2(3):404–410

    PubMed  CAS  Google Scholar 

  • Ling Y, Morgan K et al (2003) Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer’s disease. Int J Biochem Cell Biol 35(11):1505–1535

    PubMed  CAS  Google Scholar 

  • Lomakin A, Chung DS et al (1996) On the nucleation and growth of amyloid ß-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci USA 93:1125–1129

    PubMed  CAS  Google Scholar 

  • Lomakin A, Teplow DB et al (1997) Kinetic theory of fibrillogenesis of amyloid ß-protein. Proc Natl Acad Sci USA 94:7942–7947

    PubMed  CAS  Google Scholar 

  • Lührs T, Ritter C et al (2005) 3D structure of Alzheimer’s amyloid-ß(1-42) fibrils. Proc Natl Acad Sci USA 102:17342–17347

    PubMed  Google Scholar 

  • Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28:8759–8770

    CAS  Google Scholar 

  • Mathur AB, Truskey GA et al (2000) Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys J 78(4):1725–1735

    PubMed  CAS  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430(7000):631–639

    PubMed  CAS  Google Scholar 

  • Maury CP (2009) The emerging concept of functional amyloid. J Intern Med 265(3):329–334

    PubMed  CAS  Google Scholar 

  • Mehta AD, Finer JT et al (1997) Detection of single-molecule interactions using correlated thermal diffusion. Proc Natl Acad Sci USA 94(15):7927–7931

    PubMed  CAS  Google Scholar 

  • Mehta AD, Pullen KA et al (1998) Single molecule biochemistry using optical tweezers. FEBS Lett 430(1–2):23–27

    PubMed  CAS  Google Scholar 

  • Mehta AD, Rief M et al (1999a) Biomechanics, one molecule at a time. J Biol Chem 274(21):14517–14520

    PubMed  CAS  Google Scholar 

  • Mehta AD, Rief M et al (1999b) Single-molecule biomechanics with optical methods. Science 283(5408):1689–1695

    PubMed  CAS  Google Scholar 

  • Merkel R, Nassoy P et al (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397(6714):50–53

    PubMed  CAS  Google Scholar 

  • Mesquida P, Riener CK et al (2007) Morphology and mechanical stability of amyloid-like peptide fibrils. J Mater Sci Mater Med 18(7):1325–1331

    PubMed  CAS  Google Scholar 

  • Michalet X, Weiss S (2002) Single-molecule spectroscopy and microscopy. C R Physique 3:619–644

    CAS  Google Scholar 

  • Moerner WE, Orrit M (1999) Illuminating single molecules in condensed matter. Science 283(5408):1670–1676

    PubMed  CAS  Google Scholar 

  • Morais-de-Sa E, Pereira PJ et al (2004) The crystal structure of transthyretin in complex with diethylstilbestrol: a promising template for the design of amyloid inhibitors. J Biol Chem 279(51):53483–53490

    PubMed  CAS  Google Scholar 

  • Mostaert AS, Higgins MJ et al (2006) Nanoscale mechanical characterisation of amyloid fibrils discovered in a natural adhesive. J Biol Phys 32(5):393–401

    PubMed  CAS  Google Scholar 

  • Mostaert SA, Crockett R et al (2009) Mechanically functional amyloid fibrils in the adhesive of a marine invertebrate as revealed by Raman spectroscopy and atomic force microscopy. Arch Histol Cytol 72(4–5):199–207

    Google Scholar 

  • Muller DJ, Janovjak H et al (2002) Observing structure, function and assembly of single proteins by AFM. Prog Biophys Mol Biol 79(1–3):1–43

    PubMed  Google Scholar 

  • Myers SL, Jones S et al (2006) A systematic study of the effect of physiological factors on ß2-microglobulin amyloid formation at neutral pH. Biochemistry 45:2311–2321

    PubMed  CAS  Google Scholar 

  • Neuman KC (2010) Single-molecule measurements of DNA topology and topoisomerases. J Biol Chem 285(25):18967–18971

    PubMed  CAS  Google Scholar 

  • Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6):491–505

    PubMed  CAS  Google Scholar 

  • Nichols MR, Moss MA et al (2002) Growth of beta-amyloid(1-40) protofibrils by monomer elongation and lateral association. Characterization of distinct products by light scattering and atomic force microscopy. Biochemistry 41(19):6115–6127

    PubMed  CAS  Google Scholar 

  • Nie S, Zare RN (1997) Optical detection of single molecules. Annu Rev Biophys Biomol Struct 26:567–596

    PubMed  CAS  Google Scholar 

  • Nie S, Chiu DT et al (1994) Probing individual molecules with confocal fluorescence microscopy. Science 266(5187):1018–1021

    PubMed  CAS  Google Scholar 

  • Nishida S, Funabashi Y et al (2002) Combination of AFM with an objective-type total internal reflection fluorescence microscope (TIRFM) for nanomanipulation of single cells. Ultramicroscopy 91(1–4):269–274

    PubMed  CAS  Google Scholar 

  • Nishizaka T, Miyata H et al (1995) Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature 377(6546):251–254

    PubMed  CAS  Google Scholar 

  • Noy A (2011) Force spectroscopy 101: how to design, perform, and analyze an AFM-based single molecule force spectroscopy experiment. Curr Opin Chem Biol 15:710–718

    PubMed  CAS  Google Scholar 

  • Orrit M, Bernard J (1990) Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys Rev Lett 65(21):2716–2719

    PubMed  CAS  Google Scholar 

  • Orte A, Birkett NR et al (2008) Direct characterization of amyloidogenic oligomers by single-molecule fluorescence. Proc Natl Acad Sci USA 105(38):14424–14429

    PubMed  CAS  Google Scholar 

  • Orte A, Clarke R et al (2010) Single-molecule two-colour coincidence detection to probe biomolecular associations. Biochem Soc Trans 38(4):914–918

    PubMed  CAS  Google Scholar 

  • Orte A, Clarke RW et al (2011) Single-molecule fluorescence coincidence spectroscopy and its application to resonance energy transfer. Chemphyschem 12(3):491–499

    PubMed  CAS  Google Scholar 

  • Otzen D (2010) Functional amyloid: turning swords into plowshares. Prion 4(4):256–264

    PubMed  CAS  Google Scholar 

  • Paige MF, Bjerneld EJ et al (2001) A comparison of through-the-objective total internal reflection microscopy and epifluorescence microscopy for single-molecule fluorescence imaging. Single Mol 2:191–201

    CAS  Google Scholar 

  • Pepys MB (2006) Amyloidosis. Annu Rev Med 57(8):1–19

    Google Scholar 

  • Pepys MB, Herbert J et al (2002) Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 417(6886):254–259

    PubMed  CAS  Google Scholar 

  • Peterman EJ, Sosa H et al (2004) Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors. Annu Rev Phys Chem 55:79–96

    PubMed  CAS  Google Scholar 

  • Petkova AT, Ishii Y et al (2002) A structural model for Alzheimer’s ß-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99(26):16742–16747

    PubMed  CAS  Google Scholar 

  • Petkova AT, Yau WM et al (2006) Experimental constraints on quaternary structure in Alzheimer’s beta-amyloid fibrils. Biochemistry 45(2):498–512

    PubMed  CAS  Google Scholar 

  • Pike CJ, Walencewicz-Wasserman AJ et al (1995) Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J Neurochem 64(1):253–265

    PubMed  CAS  Google Scholar 

  • Pires RH, Saraiva MJ et al (2011) Structure and assembly-disassembly properties of wild-type transthyretin amyloid protofibrils observed with atomic force microscopy. J Mol Recognit 24(3):467–476

    PubMed  CAS  Google Scholar 

  • Pope LH, Bennink ML et al (2002) Optical tweezers stretching of chromatin. J Muscle Res Cell Motil 23(5–6):397–407

    PubMed  Google Scholar 

  • Qu X, Wu D et al (2004) Nanometer-localized multiple single-molecule fluorescence microscopy. Proc Natl Acad Sci USA 101(31):11298–11303

    PubMed  CAS  Google Scholar 

  • Rief M, Grubmuller H (2002) Force spectroscopy of single biomolecules. Chemphyschem 3(3):255–261

    PubMed  CAS  Google Scholar 

  • Rief M, Gautel M et al (1997a) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315):1109–1112

    PubMed  CAS  Google Scholar 

  • Rief M, Oesterhelt F et al (1997b) Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275(5304):1295–1297

    PubMed  CAS  Google Scholar 

  • Rief M, Fernandez JM et al (1998a) Elastically coupled two-level systems as a model for biopolymer extensibility. Phys Rev Lett 81(21):4764–4767

    CAS  Google Scholar 

  • Rief M, Gautel M et al (1998b) The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy. Biophys J 75(6):3008–3014

    PubMed  CAS  Google Scholar 

  • Rochet JC, Lansbury PT (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10:60–68

    PubMed  CAS  Google Scholar 

  • Sandal M, Valle F et al (2008) Conformational equilibria in monomeric alpha-synuclein at the single-molecule level. PLoS Biol 6(1):e6

    PubMed  Google Scholar 

  • Saraiva MJ (1995) Transthyretin mutations in health and disease. Hum Mutat 5(3):191–196

    PubMed  CAS  Google Scholar 

  • Saraiva MJ (2001) Transthyretin mutations in hyperthyroxinemia and amyloid diseases. Hum Mutat 17(6):493–503

    PubMed  CAS  Google Scholar 

  • Saraiva MJ (2002) Hereditary transthyretin amyloidosis: molecular basis and therapeutical strategies. Expert Rev Mol Med 14:1–11

    Google Scholar 

  • Schwille P, Korlach J et al (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36(3):176–182

    PubMed  CAS  Google Scholar 

  • Schwille P, Kummer S et al (2000) Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci USA 97(1):151–156

    PubMed  CAS  Google Scholar 

  • Seidel R, Dekker C (2007) Single-molecule studies of nucleic acid motors. Curr Opin Struct Biol 17(1):80–86

    PubMed  CAS  Google Scholar 

  • Seisenberger G, Ried MU et al (2001) Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294(5548):1929–1932

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (1997) Images in neuroscience. Alzheimer’s disease: from genes to pathogenesis. Am J Psychiatry 154(9):1198

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins and therapy. Physiol Rev 81(2):741–766

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426(6968):900–904

    PubMed  CAS  Google Scholar 

  • Serpell LC (2000) Alzheimer’s amyloid fibrils: structure and assembly. Biochim Biophys Acta 1502(1):16–30

    PubMed  CAS  Google Scholar 

  • Serpell LC, Sunde M et al (1995) Examination of the structure of the transthyretin amyloid fibril by image reconstruction from electron micrographs. J Mol Biol 254(2):113–118

    PubMed  CAS  Google Scholar 

  • Serpell LC, Sunde M et al (2000) The protofilament substructure of amyloid fibrils. J Mol Biol 300(5):1033–1039

    PubMed  CAS  Google Scholar 

  • Slayter EM, Slayter HS (1992) Light and electron microscopy. Cambridge University Press, Cambridge

    Google Scholar 

  • Smith SB, Finzi L et al (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258(5085):1122–1126

    PubMed  CAS  Google Scholar 

  • Smith SB, Cui Y et al (1996) Overstretching B-DNA: the elastic response of individual double- stranded and single-stranded DNA molecules. Science 271(5250):795–799

    PubMed  CAS  Google Scholar 

  • Smith SB, Cui Y et al (2003) Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol 361:134–162

    PubMed  CAS  Google Scholar 

  • Smith JF, Knowles TP et al (2006) Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci USA 103(43):15806–15811

    PubMed  CAS  Google Scholar 

  • Snyder GE, Sakamoto T et al (2004) Nanometer localization of single green fluorescent proteins: evidence that myosin V walks hand-over-hand via telemark configuration. Biophys J 87:1776–1783

    PubMed  CAS  Google Scholar 

  • Sorce B, Sabella S et al (2009) Single-molecule mechanical unfolding of amyloidogenic beta2-microglobulin: the force-spectroscopy approach. Chemphyschem 10(9–10):1471–1477

    PubMed  CAS  Google Scholar 

  • Souillac PO, Uversky VN et al (2002a) Effect of association state and conformational stability on the kinetics of immunoglobulin light chain amyloid fibril formation at physiological pH. J Biol Chem 277(15):12657–12665

    PubMed  CAS  Google Scholar 

  • Souillac PO, Uversky VN et al (2002b) Elucidation of the molecular mechanism during the early events in immunoglobulin light chain amyloid fibrillation. Evidence for an off-pathway oligomer at acidic pH. J Biol Chem 277(15):12666–12679

    PubMed  CAS  Google Scholar 

  • Stevens PW, Raffen R et al (1995) Recombinant immunoglobulin variable domains generated from synthetic genes provide a system for in vitro characterization of light-chain amyloid proteins. Protein Sci 4(3):421–432

    PubMed  CAS  Google Scholar 

  • Stout AL (2001) Detection and characterization of individual intermolecular bonds using optical tweezers. Biophys J 80(6):2976–2986

    PubMed  CAS  Google Scholar 

  • Strunz T, Oroszlan K et al (2000) Model energy landscapes and the force-induced dissociation of ligand- receptor bonds. Biophys J 79(3):1206–1212

    PubMed  CAS  Google Scholar 

  • Sullan RM, Gunari N et al (2009) Nanoscale structures and mechanics of barnacle cement. Biofouling 25(3):263–275

    PubMed  CAS  Google Scholar 

  • Sunde M, Serpell LC et al (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273(3):729–739

    PubMed  CAS  Google Scholar 

  • Svoboda K, Block S (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285

    PubMed  CAS  Google Scholar 

  • Sweers K, van der Werf K et al (2011) Nanomechanical properties of alpha-synuclein amyloid fibrils: a comparative study by nanoindentation, harmonic force microscopy, and Peakforce QNM. Nanoscale Res Lett 6(1):270

    PubMed  CAS  Google Scholar 

  • Sweers KK, Bennink ML et al (2012) Nanomechanical properties of single amyloid fibrils. J Phys Condens Matter 24(24):243101

    PubMed  CAS  Google Scholar 

  • Tan SY, Pepys MB (1994) Amyloidosis. Histopathology 25:403–414

    PubMed  CAS  Google Scholar 

  • Tennent GA (1999) Isolation and characterization of amyloid fibrils from tissue. Methods Enzymol 309:26–47

    PubMed  CAS  Google Scholar 

  • Tennent GA, Lovat LB et al (1995) Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc Natl Acad Sci USA 92(10):4299–4303

    PubMed  CAS  Google Scholar 

  • Terzi E, Holzemann G et al (1994) Alzheimer beta-amyloid peptide 25-35: electrostatic interactions with phospholipid membranes. Biochemistry 33(23):7434–7441

    PubMed  CAS  Google Scholar 

  • Tjernberg LO, Pramanik A et al (1999) Amyloid β-peptide polymerization studied using fluorescence correlation spectroscopy. Chem Biol 6:53–62

    PubMed  CAS  Google Scholar 

  • Török M, Milton S et al (2002) Structural and dynamic features of Alzheimer’s Abeta peptide in amyloid fibrils studied by site-directed spin labeling. J Biol Chem 277(43):40810–40815

    PubMed  Google Scholar 

  • Tskhovrebova L, Trinick J et al (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387(6630):308–312

    PubMed  CAS  Google Scholar 

  • Tycko R (2004) Progress towards a molecular-level understanding of amyloid fibrils. Curr Op Struct Biol 14:96–103

    CAS  Google Scholar 

  • Van Craenenbroeck E, Engelborghs Y (2000) Fluorescence correlation spectroscopy: molecular recognition at the single molecule level. J Mol Recognit 13(2):93–100

    PubMed  Google Scholar 

  • Walsh DM, Hartley DM et al (1999) Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 274(36):25945–25952

    PubMed  CAS  Google Scholar 

  • Wang MD (1999) Manipulation of single molecules in biology. Curr Opin Biotechnol 10(1):81–86

    PubMed  CAS  Google Scholar 

  • Wang MC, Uhlenbeck GE (1945) On the theory of Brownian motion II. Rev Mod Phys 17:323–341

    Google Scholar 

  • Webb RH (1999) Theoretical basis of confocal microscopy. Methods Enzymol 307:3–20

    PubMed  CAS  Google Scholar 

  • Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283(5408):1676–1683

    PubMed  CAS  Google Scholar 

  • Westermark P, Sletten K et al (1990) Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proc Natl Acad Sci USA 87(7):2843–2845

    PubMed  CAS  Google Scholar 

  • Westermark P, Benson MD et al (2005) Amyloid: toward terminology clarification. Amyloid 12(1):1–4

    PubMed  CAS  Google Scholar 

  • Yanagida T, Iwaki M et al (2008) Single molecule measurements and molecular motors. Philos Trans R Soc Lond B Biol Sci 363(1500):2123–2134

    PubMed  CAS  Google Scholar 

  • Yang DS, Yip CM et al (1999) Manipulating the amyloid-beta aggregation pathway with chemical chaperones. J Biol Chem 274(46):32970–32974

    PubMed  CAS  Google Scholar 

  • Yildiz A, Forkey JN et al (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065

    PubMed  CAS  Google Scholar 

  • Zhu M, Souillac PO et al (2002) Surface-catalyzed amyloid fibril formation. J Biol Chem 277(52):50914–50922

    PubMed  CAS  Google Scholar 

  • Zhuang X, Rief M (2003) Single-molecule folding. Curr Opin Struct Biol 13(1):88–97

    PubMed  CAS  Google Scholar 

  • Zlatanova J, Lindsay SM et al (2000) Single molecule force spectroscopy in biology using the atomic force microscope. Prog Biophys Mol Biol 74(1–2):37–61

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Hungarian Science Foundation (OTKA K73256 and K84133) and the Hungarian National Development Agency (TAMOP-4.2.1.B-09/1/KMR-2010-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklós S. Z. Kellermayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kellermayer, M.S.Z., Karsai, Á., Murvai, Ü., Erdélyi-Bótor, S., Kardos, J., Pires, R.H. (2012). Single-Molecule Studies of Amyloidogenic Proteins. In: Oberhauser, A. (eds) Single-molecule Studies of Proteins. Biophysics for the Life Sciences, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4921-8_7

Download citation

Publish with us

Policies and ethics