Skip to main content
Log in

Thermophoretic trap for single amyloid fibril and protein aggregation studies

  • Brief Communication
  • Published:

From Nature Methods

View current issue Submit your manuscript

Abstract

The study of the aggregation of soluble proteins into highly ordered, insoluble amyloid fibrils is fundamental for the understanding of neurodegenerative disorders. Here, we present a method for the observation of single amyloid fibrils that allows the investigation of fibril growth, secondary nucleation or fibril breakup that is typically hidden in the average ensemble. Our approach of thermophoretic trapping and rotational diffusion measurements is demonstrated for single Aβ40, Aβ42 and pyroglutamyl-modified amyloid-β variant (pGlu3-Aβ340) amyloid fibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Thermophoretic trapping principle and exemplary raw data.
Fig. 2: Fibril dynamics, growth and breakup.

Similar content being viewed by others

Data availability

A dataset for demonstration can be downloaded at https://doi.org/10.5281/zenodo.1414296. The full dataset that supports the findings of this study is available from the corresponding author upon reasonable request.

Code availability

The source code and the files for the software used in this study are contained in the Supplementary Software, and a maintained version can be downloaded at https://github.com/molecular-nanophotonics/thermophoretic-trap-for-protein-aggregation-studies.

References

  1. Knowles, T. P. J., Vendruscolo, M. & Dobson, C. M. Nat. Rev. Mol. Cell Biol. 15, 384–396 (2014).

    Article  CAS  Google Scholar 

  2. Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A. & Radford, S. E. Nat. Rev. Mol. Cell Biol. 19, 755–773 (2018).

    Article  CAS  Google Scholar 

  3. Linse, S. Biophys. Rev. 9, 329–338 (2017).

    Article  CAS  Google Scholar 

  4. Blackley, H. et al. J. Mol. Biol. 298, 833–840 (2000).

    Article  CAS  Google Scholar 

  5. Pinotsi, D. et al. Nano Lett. 14, 339–345 (2014).

    Article  CAS  Google Scholar 

  6. Ban, T., Yamaguchi, K. & Goto, Y. Acc. Chem. Res. 39, 663–670 (2006).

    Article  CAS  Google Scholar 

  7. Tycko, R. Annu. Rev. Phys. Chem. 62, 279–299 (2011).

    Article  CAS  Google Scholar 

  8. Knowles, T. P. J. et al. Proc. Natl Acad. Sci. USA 108, 14746–14751 (2011).

    Article  CAS  Google Scholar 

  9. Wolff, M. et al. Sci. Rep. 6, 22829 (2016).

    Article  CAS  Google Scholar 

  10. Braun, M. & Cichos, F. ACS Nano 7, 11200–11208 (2013).

    Article  CAS  Google Scholar 

  11. Braun, M., Bregulla, A. P., Günther, K., Mertig, M. & Cichos, F. Nano Lett. 15, 5499–5505 (2015).

    Article  CAS  Google Scholar 

  12. Piazza, R. & Parola, A. J. Phys. Condens. Matter 20, 153102 (2008).

    Article  Google Scholar 

  13. Würger, A. Rep. Prog. Phys. 73, 126601 (2010).

    Article  Google Scholar 

  14. Bregulla, A. P., Würger, A., Günther, K., Mertig, M. & Cichos, F. Phys. Rev. Lett. 116, 188303 (2016).

    Article  Google Scholar 

  15. Xue, C., Lin, T. Y., Chang, D. & Guo, Z. R. Soc. Open Sci. 4, 160696 (2017).

    Article  Google Scholar 

  16. Reichl, M., Herzog, M., Götz, A. & Braun, D. Phys. Rev. Lett. 112, 198101 (2014).

    Article  Google Scholar 

  17. Scheidt, H. A., Adler, J., Krueger, M. & Huster, D. Sci. Rep. 6, 1–7 (2016).

    Article  Google Scholar 

  18. Cohen, A. E. & Moerner, W. E. Proc. Natl Acad. Sci. USA 103, 4362–4365 (2006).

    Article  CAS  Google Scholar 

  19. Watkins, L. P. & Yang, H. J. Phys. Chem. B 109, 617–628 (2005).

    Article  CAS  Google Scholar 

  20. Yang, H. J. Chem. Phys. 129, 074701 (2008).

    Article  Google Scholar 

  21. Fränzl, M. et al. Protocol Exchange https://doi.org/10.1038/protex.2019.031 (2019).

  22. Luk, V. N., Mo, G. C. & Wheeler, A. R. Langmuir 24, 6382–6389 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.C. and D.H. acknowledge financial support by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) through the Collaborative Research Center TRR 102 ‘Polymers under multiple constraints: restricted and controlled molecular order and mobility’ (funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project number 189853844–SFB TRR 102) and project CI 33/14-1. J.P. and M.M. acknowledge financial support by the BMBF (contract no. 03WKCL01G) and the DFG via the Cluster of Excellence ‘cfaed’ (contract no. EXC 1056/1). We thank A. Kramer for helping to revise the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.F., T.T. and F.C. designed the experiments. M.F. and T.T. performed the experiments. M.F., T.T. and F.C. analyzed the data. J.A. prepared the amyloid samples and carried out fibrillation kinetics measurements. J.P., M.F., T.T., F.C. and M.M. developed the trap preparation procedure. D.H. and F.C. provided the experimental equipment. M.F., T.T., J.A., D.H. and F.C. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Frank Cichos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Allison Doerr was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–12 and Supplementary Protocol

Reporting Summary

Supplementary Software

The repository contains a collection of Python scripts and Jupyter Notebooks for the tracking and data analysis of a single amyloid fibril in a thermophoretic trap.

Supplementary Video 1

40 fibril of length L = 1.5 μm confined inside the thermophoretic trap with an incident laser heating power of Pheat = 1 mW. A sample image from the movie is displayed in Fig. 1b of the main text. The dashed circle indicates the inner diameter (10 μm) of the trap. The exposure time and inverse framerate correspond to 30 ms.

Supplementary Video 2

Tracked position and orientation of the Aβ40 fibril shown in Supplementary Video 1 overplayed with the original video. The dashed circle indicates the inner diameter (10 μm) of the trap. The exposure time and inverse framerate correspond to 30 ms.

Supplementary Video 3

Fragmentation of a trapped Aβ40 fibril of length L = 1.1 μm corresponding to the image sequence Fig. 2f. The dashed circle indicates the inner diameter (10 μm) of the trap. The exposure time and inverse framerate correspond to 30 ms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fränzl, M., Thalheim, T., Adler, J. et al. Thermophoretic trap for single amyloid fibril and protein aggregation studies. Nat Methods 16, 611–614 (2019). https://doi.org/10.1038/s41592-019-0451-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0451-6

  • Springer Nature America, Inc.

This article is cited by

Navigation