Skip to main content
Log in

Intrinsic disorder in the kinesin superfamily

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Kinesin molecular motors perform a myriad of intracellular transport functions. While their mechanochemical mechanisms are well understood and well-conserved throughout the superfamily, the cargo-binding and regulatory mechanisms governing the activity of kinesins are highly diverse and, in general, incompletely characterized. Here we present evidence from bioinformatic predictions indicating that most kinesin superfamily members contain significant regions of intrinsically disordered (ID) residues. ID regions can bind to multiple partners with high specificity and are highly labile to post-translational modification and degradation signals. In kinesins, the predicted ID regions are primarily found in areas outside the motor domains, where primary sequences diverge by family, suggesting that the ID may be a critical structural element for determining the functional specificity of individual kinesins. To support this concept, we present a systematic analysis of the kinesin superfamily, family by family, for predicted ID regions. We combine this analysis with a comprehensive review of kinesin-binding partners and post-translational modifications. We find two key trends across the entire kinesin superfamily. First, ID residues tend to be in the tail regions of kinesins, opposite the superfamily-conserved motor domains. Second, predicted ID regions correlate to regions that are known to bind to cargoes and/or undergo post-translational modifications. We therefore propose that the ID residue is a structural element utilized by the kinesin superfamily in order to impart functional specificity to individual kinesins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ID:

Intrinsic disorder/intrinsically disordered

MT:

Microtubule

PTM:

Post-translational modification

References

  • Abaza A, Soleilhac JM, Westendorf J, Piel M, Crevel I, Roux A, Pirollet F (2003) M phase phosphoprotein 1 is a human plus-end-directed kinesin-related protein required for cytokinesis. J Biol Chem 278(30):27844–27852. doi:10.1074/jbc.M304522200

    Article  PubMed  CAS  Google Scholar 

  • Asaba N, Hanada T, Takeuchi A, Chishti AH (2003) Direct interaction with a kinesin-related motor mediates transport of mammalian discs large tumor suppressor homologue in epithelial cells. J Biol Chem 278(10):8395–8400. doi:10.1074/jbc.M210362200

    Article  PubMed  CAS  Google Scholar 

  • Ashar HR, James L, Gray K, Carr D, Black S, Armstrong L, Bishop WR, Kirschmeier P (2000) Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J Biol Chem 275(39):30451–30457. doi:10.1074/jbc.M003469200

    Article  PubMed  CAS  Google Scholar 

  • Bartels T, Choi JG, Selkoe DJ (2011) alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477(7362):107–110. doi:10.1038/nature10324

    Article  PubMed  CAS  Google Scholar 

  • Bieling P, Telley IA, Piehler J, Surrey T (2008) Processive kinesins require loose mechanical coupling for efficient collective motility. EMBO Rep 9(11):1121–1127. doi:10.1038/embor.2008.169

    Article  PubMed  CAS  Google Scholar 

  • Blangy A, Lane HA, D’Herin P, Harper M, Kress M, Nigg EA (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83(7):1159–1169

    Article  PubMed  CAS  Google Scholar 

  • Boman AL, Kuai J, Zhu X, Chen J, Kuriyama R, Kahn RA (1999) Arf proteins bind to mitotic kinesin-like protein 1 (MKLP1) in a GTP-dependent fashion. Cell Motil Cytoskeleton 44(2):119–132. doi:10.1002/(SICI)1097-0169(199910)44:2<119::AID-CM4>3.0.CO;2-C

    Article  PubMed  CAS  Google Scholar 

  • Bruno L, Salierno M, Wetzler DE, Desposito MA, Levi V (2011) Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells. PLoS One 6(4):e18332. doi:10.1371/journal.pone.0018332

    Article  PubMed  CAS  Google Scholar 

  • Cai D, Hoppe AD, Swanson JA, Verhey KJ (2007) Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells. J Cell Biol 176(1):51–63. doi:10.1083/jcb.200605097

    Article  PubMed  CAS  Google Scholar 

  • Cai S, Weaver LN, Ems-McClung SC, Walczak CE (2009) Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Mol Biol Cell 20(5):1348–1359. doi:10.1091/mbc.E08-09-0971

    Article  PubMed  CAS  Google Scholar 

  • Chan GK, Schaar BT, Yen TJ (1998) Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J Cell Biol 143(1):49–63

    Article  PubMed  CAS  Google Scholar 

  • Chana M, Tripet BP, Mant CT, Hodges RS (2002) The role of unstructured highly charged regions on the stability and specificity of dimerization of two-stranded alpha-helical coiled-coils: analysis of the neck-hinge region of the kinesin-like motor protein Kif3A. J Struct Biol 137(1–2):206–219. doi:10.1006/jsbi.2002.4446

    Article  PubMed  CAS  Google Scholar 

  • Chana MS, Tripet BP, Mant CT, Hodges R (2005) Stability and specificity of heterodimer formation for the coiled-coil neck regions of the motor proteins Kif3A and Kif3B: the role of unstructured oppositely charged regions. J Pept Res 65(2):209–220. doi:10.1111/j.1399-3011.2005.00210.x

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Sweredoski M, Baldi P (2005) Accurate prediction of protein disordered regions by mining protein structure data. Data Min Knowl Disc 11(3):213–222

    Article  Google Scholar 

  • Cheung HO, Zhang X, Ribeiro A, Mo R, Makino S, Puviindran V, Law KK, Briscoe J, Hui CC (2009) The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci Signal 2(76):ra29. doi:10.1126/scisignal.2000405

    Article  PubMed  CAS  Google Scholar 

  • Cho KI, Cai Y, Yi H, Yeh A, Aslanukov A, Ferreira PA (2007) Association of the kinesin-binding domain of RanBP2 to KIF5B and KIF5C determines mitochondria localization and function. Traffic 8(12):1722–1735. doi:10.1111/j.1600-0854.2007.00647.x

    Article  PubMed  CAS  Google Scholar 

  • Diefenbach RJ, Mackay JP, Armati PJ, Cunningham AL (1998) The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37(47):16663–16670. doi:10.1021/bi981163r

    Article  PubMed  CAS  Google Scholar 

  • Dorner C, Ullrich A, Haring HU, Lammers R (1999) The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family. J Biol Chem 274(47):33654–33660

    Article  PubMed  CAS  Google Scholar 

  • Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434. doi:10.1093/bioinformatics/bti541

    Article  PubMed  CAS  Google Scholar 

  • Dosztanyi Z, Meszaros B, Simon I (2009) ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25(20):2745–2746. doi:10.1093/bioinformatics/btp518

    Article  PubMed  CAS  Google Scholar 

  • Driver JW, Rogers AR, Jamison DK, Das RK, Kolomeisky AB, Diehl MR (2010) Coupling between motor proteins determines dynamic behaviors of motor protein assemblies. Phys Chem Chem Phys 12(35):10398–10405. doi:10.1039/c0cp00117a

    Article  PubMed  CAS  Google Scholar 

  • Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ (2000) Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 11:161–171

    PubMed  CAS  Google Scholar 

  • Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z, Uversky VN (2008) The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9[Suppl 2]:S1. doi:10.1186/1471-2164-9-S2-S1

    Article  Google Scholar 

  • Dyson HJ (2011) Expanding the proteome: disordered and alternatively folded proteins. Q Rev Biophys 44(4):467–518. doi:10.1017/S0033583511000060

    Article  PubMed  CAS  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208. doi:10.1038/nrm1589

    Article  PubMed  CAS  Google Scholar 

  • Ems-McClung SC, Hertzer KM, Zhang X, Miller MW, Walczak CE (2007) The interplay of the N- and C-terminal domains of MCAK control microtubule depolymerization activity and spindle assembly. Mol Biol Cell 18(1):282–294. doi:10.1091/mbc.E06-08-0724

    Article  PubMed  CAS  Google Scholar 

  • Espeut J, Gaussen A, Bieling P, Morin V, Prieto S, Fesquet D, Surrey T, Abrieu A (2008) Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E. Mol Cell 29(5):637–643. doi:10.1016/j.molcel.2008.01.004

    Article  PubMed  CAS  Google Scholar 

  • Fink G, Hajdo L, Skowronek KJ, Reuther C, Kasprzak AA, Diez S (2009) The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nat Cell Biol 11(6):717–723. doi:10.1038/ncb1877

    Article  PubMed  CAS  Google Scholar 

  • Gruneberg U, Neef R, Li X, Chan EH, Chalamalasetty RB, Nigg EA, Barr FA (2006) KIF14 and citron kinase act together to promote efficient cytokinesis. J Cell Biol 172(3):363–372. doi:10.1083/jcb.200511061

    Article  PubMed  CAS  Google Scholar 

  • Guillaud L, Wong R, Hirokawa N (2008) Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nat Cell Biol 10(1):19–29. doi:10.1038/ncb1665

    Article  PubMed  CAS  Google Scholar 

  • Guse A, Mishima M, Glotzer M (2005) Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis. Curr Biol 15(8):778–786. doi:10.1016/j.cub.2005.03.041

    Article  PubMed  CAS  Google Scholar 

  • Hackney DD, Stock MF (2000) Kinesin’s IAK tail domain inhibits initial microtubule-stimulated ADP release. Nat Cell Biol 2(5):257–260. doi:10.1038/35010525

    Article  PubMed  CAS  Google Scholar 

  • Hammond JW, Cai D, Blasius TL, Li Z, Jiang Y, Jih GT, Meyhofer E, Verhey KJ (2009) Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biol 7(3):e72. doi:10.1371/journal.pbio.1000072

    Article  PubMed  CAS  Google Scholar 

  • Hammond JW, Blasius TL, Soppina V, Cai D, Verhey KJ (2010) Autoinhibition of the kinesin-2 motor KIF17 via dual intramolecular mechanisms. J Cell Biol 189(6):1013–1025. doi:10.1083/jcb.201001057

    Article  PubMed  CAS  Google Scholar 

  • Harrison A, King SM (2000) The molecular anatomy of dynein. Essays Biochem 35:75–87

    PubMed  CAS  Google Scholar 

  • Helenius J, Brouhard G, Kalaidzidis Y, Diez S, Howard J (2006) The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441(7089):115–119. doi:10.1038/nature04736

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N, Noda Y (2008) Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev 88(3):1089–1118. doi:10.1152/physrev.00023.2007

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10(10):682–696. doi:10.1038/nrm2774

    Article  PubMed  CAS  Google Scholar 

  • Hizlan D, Mishima M, Tittmann P, Gross H, Glotzer M, Hoenger A (2006) Structural analysis of the ZEN-4/CeMKLP1 motor domain and its interaction with microtubules. J Struct Biol 153(1):73–84. doi:10.1016/j.jsb.2005.10.007

    Article  PubMed  CAS  Google Scholar 

  • Honnappa S, Gouveia SM, Weisbrich A, Damberger FF, Bhavesh NS, Jawhari H, Grigoriev I, van Rijssel FJ, Buey RM, Lawera A, Jelesarov I, Winkler FK, Wuthrich K, Akhmanova A, Steinmetz MO (2009) An EB1-binding motif acts as a microtubule tip localization signal. Cell 138(2):366–376. doi:10.1016/j.cell.2009.04.065

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Yao Y, Xu HZ, Wang ZG, Lu L, Dai W (2009) Defects in chromosome congression and mitotic progression in KIF18A-deficient cells are partly mediated through impaired functions of CENP-E. Cell Cycle 8(16):2643–2649

    Article  PubMed  CAS  Google Scholar 

  • Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323(3):573–584

    Article  PubMed  CAS  Google Scholar 

  • Jiang K, Wang J, Liu J, Ward T, Wordeman L, Davidson A, Wang F, Yao X (2009) TIP150 interacts with and targets MCAK at the microtubule plus ends. EMBO Rep 10(8):857–865. doi:10.1038/embor.2009.94

    Article  PubMed  CAS  Google Scholar 

  • Kaan HY, Hackney DD, Kozielski F (2011) The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition. Science 333(6044):883–885. doi:10.1126/science.1204824

    Article  PubMed  CAS  Google Scholar 

  • Kerber ML, Cheney RE (2011) Myosin-X: a MyTH-FERM myosin at the tips of filopodia. J Cell Sci 124(Pt 22):3733–3741. doi:10.1242/jcs.023549

    Article  PubMed  Google Scholar 

  • Kim Y, Holland AJ, Lan W, Cleveland DW (2010) Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E. Cell 142(3):444–455. doi:10.1016/j.cell.2010.06.039

    Article  PubMed  CAS  Google Scholar 

  • King SM (2000) The dynein microtubule motor. Biochim Biophys Acta 1496(1):60–75

    Article  PubMed  CAS  Google Scholar 

  • Klopfenstein DR, Tomishige M, Stuurman N, Vale RD (2002) Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109(3):347–358

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Tsang WY, Li J, Lane W, Dynlacht BD (2011) Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis. Cell 145(6):914–925. doi:10.1016/j.cell.2011.04.028

    Article  PubMed  CAS  Google Scholar 

  • Kumar J, Choudhary BC, Metpally R, Zheng Q, Nonet ML, Ramanathan S, Klopfenstein DR, Koushika SP (2010) The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLoS Genet 6(11):e1001200. doi:10.1371/journal.pgen.1001200

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama R, Gustus C, Terada Y, Uetake Y, Matuliene J (2002) CHO1, a mammalian kinesin-like protein, interacts with F-actin and is involved in the terminal phase of cytokinesis. J Cell Biol 156(5):783–790. doi:10.1083/jcb.200109090

    Article  PubMed  CAS  Google Scholar 

  • Lan W, Zhang X, Kline-Smith SL, Rosasco SE, Barrett-Wilt GA, Shabanowitz J, Hunt DF, Walczak CE, Stukenberg PT (2004) Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol 14(4):273–286. doi:10.1016/j.cub.2004.01.055

    PubMed  CAS  Google Scholar 

  • Lee KS, Yuan YL, Kuriyama R, Erikson RL (1995) Plk is an M-phase-specific protein kinase and interacts with a kinesin-like protein, CHO1/MKLP-1. Mol Cell Biol 15(12):7143–7151

    PubMed  CAS  Google Scholar 

  • Lee SH, McCormick F, Saya H (2010) Mad2 inhibits the mitotic kinesin MKlp2. J Cell Biol 191(6):1069–1077. doi:10.1083/jcb.201003095

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Langford KJ, Askham JM, Bruning-Richardson A, Morrison EE (2008) MCAK associates with EB1. Oncogene 27(17):2494–2500. doi:10.1038/sj.onc.1210867

    Article  PubMed  CAS  Google Scholar 

  • Li JF, Nebenfuhr A (2008) The tail that wags the dog: the globular tail domain defines the function of myosin V/XI. Traffic 9(3):290–298. doi:10.1111/j.1600-0854.2007.00687.x

    Article  PubMed  CAS  Google Scholar 

  • Liao H, Li G, Yen TJ (1994) Mitotic regulation of microtubule cross-linking activity of CENP-E kinetochore protein. Science 265(5170):394–398

    Article  PubMed  CAS  Google Scholar 

  • Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003a) Protein disorder prediction: implications for structural proteomics. Structure 11(11):1453–1459

    Article  PubMed  CAS  Google Scholar 

  • Linding R, Russell RB, Neduva V, Gibson TJ (2003b) GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Res 31(13):3701–3708

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Erikson RL (2007) The nuclear localization signal of mitotic kinesin-like protein Mklp-1: effect on Mklp-1 function during cytokinesis. Biochem Biophys Res Commun 353(4):960–964. doi:10.1016/j.bbrc.2006.12.142

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Ding X, Du J, Cai X, Huang Y, Ward T, Shaw A, Yang Y, Hu R, Jin C, Yao X (2007) Human NUF2 interacts with centromere-associated protein E and is essential for a stable spindle microtubule-kinetochore attachment. J Biol Chem 282(29):21415–21424. doi:10.1074/jbc.M609026200

    Article  PubMed  CAS  Google Scholar 

  • Maddika S, Sy SM, Chen J (2009) Functional interaction between Chfr and Kif22 controls genomic stability. J Biol Chem 284(19):12998–13003. doi:10.1074/jbc.M900333200

    Article  PubMed  CAS  Google Scholar 

  • Mazumdar M, Sundareshan S, Misteli T (2004) Human chromokinesin KIF4A functions in chromosome condensation and segregation. J Cell Biol 166(5):613–620. doi:10.1083/jcb.200401142

    Article  PubMed  CAS  Google Scholar 

  • Meszaros B, Simon I, Dosztanyi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5(5):e1000376. doi:10.1371/journal.pcbi.1000376

    Article  PubMed  CAS  Google Scholar 

  • Mishima M, Kaitna S, Glotzer M (2002) Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell 2(1):41–54

    Article  PubMed  CAS  Google Scholar 

  • Neef R, Preisinger C, Sutcliffe J, Kopajtich R, Nigg EA, Mayer TU, Barr FA (2003) Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J Cell Biol 162(5):863–875. doi:10.1083/jcb.200306009

    Article  PubMed  CAS  Google Scholar 

  • Nitta R, Kikkawa M, Okada Y, Hirokawa N (2004) KIF1A alternately uses two loops to bind microtubules. Science 305(5684):678–683. doi:10.1126/science.1096621

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T, Nitta R, Okada Y, Hirokawa N (2004) A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell 116(4):591–602

    Article  PubMed  CAS  Google Scholar 

  • Ohsugi M, Tokai-Nishizumi N, Shiroguchi K, Toyoshima YY, Inoue J, Yamamoto T (2003) Cdc2-mediated phosphorylation of Kid controls its distribution to spindle and chromosomes. EMBO J 22(9):2091–2103. doi:10.1093/emboj/cdg208

    Article  PubMed  CAS  Google Scholar 

  • Rapley J, Nicolas M, Groen A, Regue L, Bertran MT, Caelles C, Avruch J, Roig J (2008) The NIMA-family kinase Nek6 phosphorylates the kinesin Eg5 at a novel site necessary for mitotic spindle formation. J Cell Sci 121(Pt 23):3912–3921. doi:10.1242/jcs.035360

    Article  PubMed  CAS  Google Scholar 

  • Rice S, Lin AW, Safer D, Hart CL, Naber N, Carragher BO, Cain SM, Pechatnikova E, Wilson-Kubalek EM, Whittaker M, Pate E, Cooke R, Taylor EW, Milligan RA, Vale RD (1999) A structural change in the kinesin motor protein that drives motility. Nature 402(6763):778–784. doi:10.1038/45483

    Article  PubMed  CAS  Google Scholar 

  • Sanhaji M, Friel CT, Kreis NN, Kramer A, Martin C, Howard J, Strebhardt K, Yuan J (2010) Functional and spatial regulation of mitotic centromere-associated kinesin by cyclin-dependent kinase 1. Mol Cell Biol 30(11):2594–2607. doi:10.1128/MCB.00098-10

    Article  PubMed  CAS  Google Scholar 

  • Schafer B, Gotz C, Dudek J, Hessenauer A, Matti U, Montenarh M (2009) KIF5C: a new binding partner for protein kinase CK2 with a preference for the CK2alpha’ subunit. Cell Mol Life Sci 66(2):339–349. doi:10.1007/s00018-008-8478-3

    Article  PubMed  CAS  Google Scholar 

  • Seeger MA, Zhang Y, Rice SE (2012) Kinesin tail domains are intrinsically disordered. Proteins 80(10):2437–46. PMCID: PMC3437001

    Google Scholar 

  • Sellers JR (2000) Myosins: a diverse superfamily. Biochim Biophys Acta 1496(1):3–22

    Article  PubMed  CAS  Google Scholar 

  • Shastry S, Hancock WO (2010) Neck linker length determines the degree of processivity in kinesin-1 and kinesin-2 motors. Curr Biol 20(10):939–943. doi:10.1016/j.cub.2010.03.065

    Article  PubMed  CAS  Google Scholar 

  • Shiroguchi K, Ohsugi M, Edamatsu M, Yamamoto T, Toyoshima YY (2003) The second microtubule-binding site of monomeric kid enhances the microtubule affinity. J Biol Chem 278(25):22460–22465. doi:10.1074/jbc.M212274200

    Article  PubMed  CAS  Google Scholar 

  • Sindelar CV (2011) A seesaw model for intermolecular gating in the kinesin motor protein. Biophys Rev 3(2):85–100. doi:10.1007/s12551-011-0049-4

    Article  PubMed  CAS  Google Scholar 

  • Stock MF, Guerrero J, Cobb B, Eggers CT, Huang TG, Li X, Hackney DD (1999) Formation of the compact confomer of kinesin requires a COOH-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity. J Biol Chem 274(21):14617–14623

    Article  PubMed  CAS  Google Scholar 

  • Stout JR, Yount AL, Powers JA, Leblanc C, Ems-McClung SC, Walczak CE (2011) Kif18B interacts with EB1 and controls astral microtubule length during mitosis. Mol Biol Cell 22(17):3070–3080. doi:10.1091/mbc.E11-04-0363

    Article  PubMed  CAS  Google Scholar 

  • Sueishi M, Takagi M, Yoneda Y (2000) The forkhead-associated domain of Ki-67 antigen interacts with the novel kinesin-like protein Hklp2. J Biol Chem 275(37):28888–28892. doi:10.1074/jbc.M003879200

    Article  PubMed  CAS  Google Scholar 

  • Tahara K, Takagi M, Ohsugi M, Sone T, Nishiumi F, Maeshima K, Horiuchi Y, Tokai-Nishizumi N, Imamoto F, Yamamoto T, Kose S, Imamoto N (2008) Importin-beta and the small guanosine triphosphatase Ran mediate chromosome loading of the human chromokinesin Kid. J Cell Biol 180(3):493–506. doi:10.1083/jcb.200708003

    Article  PubMed  CAS  Google Scholar 

  • Tanenbaum ME, Macurek L, Janssen A, Geers EF, Alvarez-Fernandez M, Medema RH (2009) Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr Biol 19(20):1703–1711. doi:10.1016/j.cub.2009.08.027

    Article  PubMed  CAS  Google Scholar 

  • Tanenbaum ME, Macurek L, van der Vaart B, Galli M, Akhmanova A, Medema RH (2011) A complex of Kif18b and MCAK promotes microtubule depolymerization and is negatively regulated by Aurora kinases. Curr Biol 21(16):1356–1365. doi:10.1016/j.cub.2011.07.017

    Article  PubMed  CAS  Google Scholar 

  • Tokai N, Fujimoto-Nishiyama A, Toyoshima Y, Yonemura S, Tsukita S, Inoue J, Yamamota T (1996) Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle. EMBO J 15(3):457–467

    PubMed  CAS  Google Scholar 

  • Tompa P (2011) Unstructural biology coming of age. Curr Opin Struct Biol 21(3):419–425. doi:10.1016/j.sbi.2011.03.012

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama Y, Sakaguchi M, Terabayashi T, Inenaga T, Inoue S, Kobayashi C, Oshima N, Kiyonari H, Nakagata N, Sato Y, Sekiguchi K, Miki H, Araki E, Fujimura S, Tanaka SS, Nishinakamura R (2010) Kif26b, a kinesin family gene, regulates adhesion of the embryonic kidney mesenchyme. Proc Natl Acad Sci USA 107(20):9240–9245. doi:10.1073/pnas.0913748107

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN (2011) Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chem Soc Rev 40(3):1623–1634. doi:10.1039/c0cs00057d

    Article  PubMed  CAS  Google Scholar 

  • Vale RD (1996) Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J Cell Biol 135(2):291–302

    Article  PubMed  CAS  Google Scholar 

  • Waitzman JS, Larson AG, Cochran JC, Naber N, Cooke R, Jon Kull F, Pate E, Rice SE (2011) The loop 5 element structurally and kinetically coordinates dimers of the human kinesin-5, Eg5. Biophys J 101(11):2760–2769. doi:10.1016/j.bpj.2011.10.032

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Sauer UH (2008) OnD-CRF: predicting order and disorder in proteins using [corrected] conditional random fields. Bioinformatics 24(11):1401–1402. doi:10.1093/bioinformatics/btn132

    Article  PubMed  CAS  Google Scholar 

  • Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645. doi:10.1016/j.jmb.2004.02.002

    Article  PubMed  CAS  Google Scholar 

  • Weaver LN, Ems-McClung SC, Stout JR, LeBlanc C, Shaw SL, Gardner MK, Walczak CE (2011) Kif18A uses a microtubule binding site in the tail for plus-end localization and spindle length regulation. Curr Biol 21(17):1500–1506. doi:10.1016/j.cub.2011.08.005

    Article  PubMed  CAS  Google Scholar 

  • Weinger JS, Qiu M, Yang G, Kapoor TM (2011) A nonmotor microtubule binding site in kinesin-5 is required for filament crosslinking and sliding. Curr Biol 21(2):154–160. doi:10.1016/j.cub.2010.12.038

    Article  PubMed  CAS  Google Scholar 

  • Wozniak MJ, Melzer M, Dorner C, Haring HU, Lammers R (2005) The novel protein KBP regulates mitochondria localization by interaction with a kinesin-like protein. BMC Cell Biol 6:35. doi:10.1186/1471-2121-6-35

    Article  PubMed  CAS  Google Scholar 

  • Yamada KH, Hanada T, Chishti AH (2007) The effector domain of human Dlg tumor suppressor acts as a switch that relieves autoinhibition of kinesin-3 motor GAKIN/KIF13B. Biochemistry 46(35):10039–10045. doi:10.1021/bi701169w

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Chen PL (2008) Structural requirements of chromokinesin Kif4A for its proper function in mitosis. Biochem Biophys Res Commun 372(3):454–458. doi:S0006-291X(08)00959-5

    Google Scholar 

  • Yamazaki H, Nakata T, Okada Y, Hirokawa N (1996) Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. Proc Natl Acad Sci USA 93(16):8443–8448

    Article  PubMed  CAS  Google Scholar 

  • Yonekura H, Nomura A, Ozawa H, Tatsu Y, Yumoto N, Uyeda TQ (2006) Mechanism of tail-mediated inhibition of kinesin activities studied using synthetic peptides. Biochem Biophys Res Commun 343(2):420–427. doi:10.1016/j.bbrc.2006.02.169

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura Y, Terabayashi T, Miki H (2010) Par1b/MARK2 phosphorylates kinesin-like motor protein GAKIN/KIF13B to regulate axon formation. Mol Cell Biol 30(9):2206–2219. doi:10.1128/MCB.01181-09

    Article  PubMed  CAS  Google Scholar 

  • Zecevic M, Catling AD, Eblen ST, Renzi L, Hittle JC, Yen TJ, Gorbsky GJ, Weber MJ (1998) Active MAP kinase in mitosis: localization at kinetochores and association with the motor protein CENP-E. J Cell Biol 142(6):1547–1558

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Ems-McClung SC, Walczak CE (2008a) Aurora A phosphorylates MCAK to control ran-dependent spindle bipolarity. Mol Biol Cell 19(7):2752–2765. doi:10.1091/mbc.E08-02-0198

    Article  PubMed  CAS  Google Scholar 

  • Zhang XD, Goeres J, Zhang H, Yen TJ, Porter AC, Matunis MJ (2008b) SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol Cell 29(6):729–741. doi:10.1016/j.molcel.2008.01.013

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Shao H, Huang Y, Yan F, Chu Y, Hou H, Zhu M, Fu C, Aikhionbare F, Fang G, Ding X, Yao X (2011) PLK1 phosphorylates mitotic centromere-associated kinesin and promotes its depolymerase activity. J Biol Chem 286(4):3033–3046. doi:10.1074/jbc.M110.165340

    Article  PubMed  CAS  Google Scholar 

  • Zhou R, Niwa S, Homma N, Takei Y, Hirokawa N (2009) KIF26A is an unconventional kinesin and regulates GDNF-Ret signaling in enteric neuronal development. Cell 139(4):802–813. doi:10.1016/j.cell.2009.10.023

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Bossy-Wetzel E, Jiang W (2005) Recruitment of MKLP1 to the spindle midzone/midbody by INCENP is essential for midbody formation and completion of cytokinesis in human cells. Biochem J 389(Pt 2):373–381. doi:10.1042/BJ20050097

    PubMed  CAS  Google Scholar 

  • Zusev M, Benayahu D (2009) The regulation of MS-KIF18A expression and cross talk with estrogen receptor. PLoS One 4(7):e6407. doi:10.1371/journal.pone.0006407

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge members of the Rice lab for their contributions and the NIH for support (Molecular Biophysics Training Program grant 5 T32 GM008382 to M.A.S. and R01GM072656 to S.E.R.).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Rice.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1:

Sites of ligand binding and PTM correlate with regions of ID. The ID prediction plots and sites of experimentally determined ligand binding and PTM are aligned with the predicted topology diagrams for each kinesin in the human complement, family by family. Regions of known structure, such as the motor or small globular domains, or regions of predicted coiled-coil, are designated with colored bars as indicated. Regions of unknown structure are indicated with a black line. The ID prediction plots from (Seeger et al. 2012) are superimposed in blue onto kinesin topology diagrams, such that the midline of the topology diagram lines up with the cutoff value used to predict if a residue is ordered or disordered. Therefore, residues for which the blue ID prediction plots are at or above the midline of the topology diagrams are predicted to be disordered, and residues for which the blue ID prediction plots are below the midline of the topology diagrams are predicted to be ordered. The experimentally determined ligand-binding (138 total) and PTM (42 total) sites, as described in the cited literature, are indicated by the black bars below the topology diagrams and with normal and italic text respectively. Ligand-binding sites that contain a greater percentage of predicted ID residues than a random segment of the same number of residues from the same molecule are indicated with asterisk (100/138 = 72.5 %), and PTM residues or sites that contain predicted ID residues are indicated with hash marks (38/42 = 90.5 %). (PDF 4600 kb)

Figure S2

ID in the kinesin motor domain. The kinesin motor domains contain disordered loops. A The crystal structure of the Kif5B monomeric motor (PDB: 1MKJ) is shown as a ribbon diagram, with the ADP molecule shown as a space-filling model. The surface-accessible loops are highlighted in red and labeled as indicated. The P-loop, Switch I, Switch II, and the neck-linker are highlighted in blue and labeled as indicated. B The frequencies with which each indicated structural element of the kinesin motor domain in a given kinesin subfamily was predicted to be disordered are listed in this table. The N-terminus, L1, L4/P-loop, L7, Switch I, L10, Switch II, L12, and the neck-linker are the motor elements most often predicted to be disordered. N N-terminus, L loop. (PDF 4600 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seeger, M.A., Rice, S.E. Intrinsic disorder in the kinesin superfamily. Biophys Rev 5, 233–247 (2013). https://doi.org/10.1007/s12551-012-0096-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-012-0096-5

Keywords

Navigation