Skip to main content
Log in

Gene electrotransfer: from biophysical mechanisms to in vivo applications

Part 2 - In vivo developments and present clinical applications

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Gene electrotransfer can be obtained not just on single cells in diluted suspension. For more than 10 years, this is a quasi routine strategy in tissue on the living animal and a few clinical trials have now been approved. New problems have been brought by the close contacts of cells in tissue both on the local field distribution and on the access of DNA to target cells. They need to be solved to provide a further improvement in the efficacy and safety of protein expression. There is a competition between gene transfer and cell destruction. Nevertheless, present results are indicative that electrotransfer is a promising approach for gene therapy. High level and long-lived expression of proteins can be obtained in muscles. This is used for a successful method of electrovaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abidor IG, Li LH, Hui SW (1994) Studies of cell pellets: II. Osmotic properties, electroporation, and related phenomena: membrane interactions. Biophys J 67:427–435

    Article  CAS  PubMed  Google Scholar 

  • Aihara H, Miyazaki JI (1998) Gene transfer into muscle by electroporation in vivo. Nature Biotechnol 16:867–870

    Article  CAS  Google Scholar 

  • André FM, Cournil-Henrionnet C, Vernerey D, Opolon P, Mir LM (2006) Variability of naked DNA expression after direct local injection: the influence of the injection speed. Gene Ther 13:1619–1627

    Article  PubMed  Google Scholar 

  • André FM, Gehl J, Sersa G, Préat V, Hojman P, Eriksen J, Golzio M, Cemazar M, Pavselj N, Rols MP, Miklavcic D, Neumann E, Teissié J, Mir LM (2008) Efficiency of high- and low-voltage pulse combinations for gene electrotransfer in muscle, liver, tumor and skin. Hum Gene Ther 19:1261–1271

    Article  PubMed  Google Scholar 

  • Babiuk S, Baca-Estrada ME, Foldvari M, Storms M, Rabussay D, Widera G, Babiuk LA (2002) Electroporation improves the efficacy of DNA vaccines in large animals. Vaccine 20:3399–3408

    Article  CAS  PubMed  Google Scholar 

  • Babiuk S, Baca-Estrada ME, Foldvari M, Baizer L, Stout R, Storms M et al (2003) Needle-free topical electroporation improves gene expression from plasmids administrated in porcine skin. Mol Ther 8:992–998

    Article  CAS  PubMed  Google Scholar 

  • Buchan S, Gronevik E, Mathiesen I, King CA, Stevenson FK, Rice J (2005) Electroporation as a "prime/boost" strategy for naked DNA vaccination against a tumor antigen. J Immunol 174:6292–6298

    CAS  PubMed  Google Scholar 

  • Bureau FM, Gehl J, Deleuze V, Mir LM, Scherman D (2000) Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochim Biophys Acta 1474:353–359

    CAS  PubMed  Google Scholar 

  • Canatella PJ, Black MM, Bonnichsen DM, Mckenna C, Prausnitz MR (2004) Tissue electroporation: quantification and analysis of heterogenous transport in multicellular environments. Biophys J 86:3260–3268

    Article  CAS  PubMed  Google Scholar 

  • Cemazar M, Golzio M, Sersa G, Hojman P, Kranjc S, Mesojednik S, Rols MP, Teissie J (2009) Control by pulse parameters of DNA electrotransfer into solid tumors in mice. Gene Ther 16:635–644

    Article  CAS  PubMed  Google Scholar 

  • Cheng JC, Moore TB, Sakamoto KM (2003) RNA interference and human disease. Mol Gen Metabol 80:121–128

    Article  CAS  Google Scholar 

  • Curcio C, Khan AS, Spadaro M, Quaglino E, Cavallo F, Forni G, Draghia-Akli R (2008) DNA immunization using constant-current electroporation affords long-term protection from autochthonous mammary carcinomas in cancer-prone transgenic mice. Cancer Gene Ther 15:108–114

    Article  CAS  PubMed  Google Scholar 

  • Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896–58903

    Article  CAS  PubMed  Google Scholar 

  • Dayball K, Millar J, Miller M, Wan YH, Bramson J (2003) Electroporation enables plasmid vaccines to elicit CD8+ T cell responses in the absence of CD4+ T cells. J Immunol 171:3379–3384

    CAS  PubMed  Google Scholar 

  • Dean DA (2005) Nonviral gene transfer to skeletal, smooth, and cardiac muscle in living animals. Am J Physiol Cell Physiol 285:C233–C245

    Article  Google Scholar 

  • Deharvengt S, Rejuba S, Wack S, Aprahamian M, Hajri A (2007) Efficient electrogene therapy for pancreatic adenocarcinoma treatment using the bacterial purine nucleoside phosphorylase suicide gene with fludarabine. Int J Oncol 30:1397–1406

    CAS  PubMed  Google Scholar 

  • Deng J, Schoenbach KH, Buescher ES, Hair PS, Fox PM, Beebe SJ (2003) The effects of intense submicrosecond electrical pulses on cells. Biophys J 84:2709–2714

    Article  CAS  PubMed  Google Scholar 

  • Dona M, Sandri M, Rossini K, Dell'Aica I, Podhorska-Okolow M, Carraro U (2003) Functional in vivo gene transfer into the myofibers of adult skeletal muscle. Biochem Biophys Res Commun 312:1132–1138

    Article  CAS  PubMed  Google Scholar 

  • Dupuis M, Denis-Mize K, Woo C, Goldbeck C, Selby MJ, Chen M, Otten GR, Ulmer JB, Donnelly JJ, Ott G, McDonald DM (2000) Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol 165:2850–2858

    CAS  PubMed  Google Scholar 

  • Durieux AC, Bonnefoy R, Manissolle C, Freyssenet D (2002) High-efficiency gene electrotransfer into skeletal muscle: description and physiological applicability of a new pulse generator. Biochem Biophys Res Comm 296:443–450

    Article  CAS  PubMed  Google Scholar 

  • Eefting D, Grimbergen JM, de Vries MR, van Weel V, Kaijzel EL, Que L, Moon RT, Lowik CW, van Bockel JH, Quax PH (2007) Prolonged in vivo gene silencing by electroporation-mediated plasmid delivery of small interfering RNA. Hum Gene Ther 18:861–869

    Article  CAS  PubMed  Google Scholar 

  • Escoffre JM, Debin A, Reynes JP, Drocourt D, Tiraby G, Hellaudais L, Teissié J, Golzio M (2008) Long-lasting in vivo gene silencing by electrotransfer of shRNA expressing plasmid. Tech Cancer Res Treat 7:1–8

    Google Scholar 

  • Gehl J (2008) Electroporation for drug and gene delivery in the clinic: doctors go electric. Methods Mol Biol 433:351–359

    Article  Google Scholar 

  • Gehl J, Mir LM (1999) Determination of optimal parameters for in vivo gene transfer by electroporation, using a rapid in vivo test for cell permeabilization. Biochem Biophys Res Commun 261:377–380

    Article  CAS  PubMed  Google Scholar 

  • Gehl J, Sorensen TH, Nielsen K, Raskmark P, Nielsen SL, Skovsgaard T, Mir LM (1999) In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biophys Biochim Acta 1428:233–240

    CAS  Google Scholar 

  • Gehl J, Skovsgaard T, Mir LM (2002) Vacular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochim Biophys Acta 1569:51–58

    CAS  PubMed  Google Scholar 

  • Gilbert RA, Jaroszeski MJ, Heller R (1997) Novel electrode designs for electrochemotherapy. Biochim Biophys Acta 1334:9–14

    CAS  PubMed  Google Scholar 

  • Golzio M, Teissié J, Rols MP (2002) Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci USA 99:1292–1297

    Article  CAS  PubMed  Google Scholar 

  • Golzio M, Rols MP, Teissié J (2004) In vitro and in vivo electric field-mediated permeabilization, gene transfer, and expression. Methods 33:126–135

    Article  CAS  PubMed  Google Scholar 

  • Gowrishankar TR, Weaver JC (2003) An approach to electrical modelling of single and multiple cells. Proc Natl Acad Sci USA 100:3203–3208

    Article  CAS  PubMed  Google Scholar 

  • Harrison RL, Byrne BJ, Tung L (1998) Electroporation-mediated gene transfer in cardiac tissue. FEBS Lett 435:1–5

    Article  CAS  PubMed  Google Scholar 

  • Hartikka J, Sukhu L, Buchner C, Hazard D, Bozoukova V, Margalith M, Nishioka WK, Wheeler CJ, Manthorp M, Sawdey M (2001) Electroporation-facilitated delivery of plasmid DNA in skeletal muscle: plasmid dependence of muscle damage and effect of poloxamer 188. Mol Ther 4:407–415

    Article  CAS  PubMed  Google Scholar 

  • Heller R, Jaroszeski M, Atkin A, Moradpour D, Gilbert R, Wands J, Nicolau C (1996) In vivo gene electroinjection and expression in rat liver. FEBS Lett 389:225–228

    Article  CAS  PubMed  Google Scholar 

  • Hirao LA, Wu L, Khan AS, Satishchandran A, Draghia-Akli R, Weiner DB (2008) Intradermal/cutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs a rhesus macaques. Vaccine 26:440–448

    Article  CAS  PubMed  Google Scholar 

  • Hojman J, Gissel H, Gehl J (2007) Sensitive and precise regulation of haemoglobin after gene transfer of erythropoietin to muscle tissue using electroporation. Gene Ther 14:950–959

    Article  CAS  PubMed  Google Scholar 

  • Hojman P, Gissel H, Andre FM, Cournil-Henrionnet C, Erisken J, Gehl J, Mir LM (2008) Physiological effects of high- and low-voltage pulse combinations for gene electrotransfer in muscle. Hum Gene Ther 19:1249–1260

    Article  CAS  PubMed  Google Scholar 

  • Isaka Y, Yamada K, Takabatake Y, Mizui M, Miura-Tsujie M, Ichimaru N, Yazawa K, Utsugi R, Okuyama A, Hori M, Imai E, Takahara S (2005) Electroporation-mediated HGF gene transduction protected the kidney against graft injury. Gene Ther 12:815–820

    Article  CAS  PubMed  Google Scholar 

  • Jaroszeski MJ, Gilbert RA, Heller R (1997) In vivo antitumor effects of electrochemotherapy in a hepatoma model. Biochim Biophys Acta 1334:15–18

    CAS  PubMed  Google Scholar 

  • Jazowiecka-Rakus J, Jarosz M, Szala S (2006) Combination of vasostatin gene therapy with cyclophosphamide inhibits growth of B16(F10) melanoma tumours. Acta Biochim Pol 53:199–202

    PubMed  Google Scholar 

  • Kalat M, Kupcu Z, Schuller S, Zalusky D, Zehetner M, Paster W, Schweighoffer T (2002) In vivo plasmid electroporation induces tumor antigen-specific CD8+ T-cell responses and delays tumor growth in a syngeneic mouse melanoma model. Cancer Res 62:5489–5494

    CAS  PubMed  Google Scholar 

  • Kanduser M, Miklavcic D, Pavlin M (2009) Mechanisms involved in gene electrotransfer using high- and low-voltage pulses—an in vitro study. Bioelectrochemistry 74:265–271

    Article  CAS  PubMed  Google Scholar 

  • Khoury M, Bigey P, Louis-Plence P, Noel D, Rhinn H, Scherman D, Jorgensen C, Apparailly F (2006) A comparative study on intra-articular versus systemic electrotransfer in experimental arthritis. J Gene Med 8:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Kinosita K Jr, Tsong TY (1979) Voltage-induced conductance in human erythrocyte membranes. Biochim Biophys Acta 554:479–497

    Article  CAS  PubMed  Google Scholar 

  • Kusumanto YH, Mulder NH, Dam WA, Losen M, De Baets MH, Meijer C, Hospers GA (2007) Improvement of in vivo transfer of plasmid DNA in muscle: Comparison of electroporation versus ultrasound. Drug Deliv 14:273–277

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Zhang D, Hannig J (2000) Biophysical injury mechanisms in electrical shock trauma. Annu Rev Biomed Eng 2:477–509

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Huang L (2002) Electric gene transfer to the liver following systemic administration of plasmid DNA. Gene Ther 9:1116–1119

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6:1258–1266

    Article  CAS  PubMed  Google Scholar 

  • Lucas ML, Heller L, Coppola D, Heller R (2002) IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneaous B16.F10 melanoma. Mol Ther 5:668–675

    Article  CAS  PubMed  Google Scholar 

  • Luxembourg A, Evans CF, Hannaman D (2007) Electroporation-based DNA immunization: translation to the clinic. Expert Opin Biol Ther 7:1647–1664

    Article  CAS  PubMed  Google Scholar 

  • Magee TR, Artaza JN, Ferrini MG, Vernet D, Zurriga FI, Cantini L, Reusz-Porszasz S, Rajfer J, Gonzalez-Cadavid NF (2006) Myostatin short interfering hairpin RNA gene transfer increases skeletal muscle mass. J Gene Med 8:1171–1181

    Article  CAS  PubMed  Google Scholar 

  • Mathiesen I (1999) Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther 6:508–514

    Article  CAS  PubMed  Google Scholar 

  • Mazères S, Sel D, Golzio M, Pucihar G, Tamzali Y,Miklavcic D, Teissié J (2009) Non invasive contact electrodes for in vivo localized cutaneous electropulsation andassociated drug and nucleic acid delivery. J. Control. Release 134:125–131

    Article  Google Scholar 

  • Mesojednik S, Pavlin D, Sersa G, Coer A, Kranjc S, Grosel A, Tevz G, Cemazar M (2007) The effect of the histological properties of tumors on transfection efficiency of electrically assisted gene delivery to solid tumors in mice. Gene Ther 14:1261–1269

    Article  CAS  PubMed  Google Scholar 

  • Miklavcic D, Beravs K, Semrov D, Cemazar M, Demsar F, Sersa G (1998) The importance of electric field distribution for effective in vivo electroporation of tissues. Biophys J 74:2152–2158

    Article  CAS  PubMed  Google Scholar 

  • Miklavcic D, Semrov D, Mekid H, Mir LM (2000) A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim Biophys Acta 1523:73–83

    CAS  PubMed  Google Scholar 

  • Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM, Delaere P, Branellec D, Schwartz B, Scherman D (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 96:4262–4267

    Article  CAS  PubMed  Google Scholar 

  • Mir LM, Moller PH, André F, Gehl J (2005) Electric pulse-mediated gene delivery to various animal tissues. Adv Genet 54:83–114

    Article  CAS  PubMed  Google Scholar 

  • Molnar MJ, Gilbert R, Lu Y, Liu AB, Guo A, Larochelle N et al (2004) Factors influencing the efficacy, longevity, and safety of electroporation-assisted plasmid-based gene transfer into mouse muscles. Mol Ther 10:447–455

    Article  CAS  PubMed  Google Scholar 

  • Mossop BJ, Barr RC, Henshaw JW, Zaharoff DA, Yuan F (2006) Electric fields in tumors exposed to external voltage sources: implication for electric field-mediated drug and gene delivery. Ann Biomed Eng 34:1564–1572

    Article  PubMed  Google Scholar 

  • Murakami T, Arai M, Sunada Y, Nakamura A (2006) VEGF 164 gene transfer by electroporation improves diabetic sensory neuropathy in mice. J Gene Med 8:773–781

    Article  CAS  PubMed  Google Scholar 

  • Pavlin M, Pavselj N, Miklavcic D (2002) Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. IEEE Trans Biomed Eng 49:605–612

    Article  PubMed  Google Scholar 

  • Payen E, Bettan M, Rouyer-Fessard P, Beuzard Y, Scherman D (2001) Improvement of mouse β-thalassemia by electrotransfer of erythropoietin cDNA. Exp Hematol 29:295–300

    Article  CAS  PubMed  Google Scholar 

  • Pucihar G, Kotnik T, Teissié J, Miklavcic D (2007) Electropermeabilization of dense cell suspensions. Eur Biophys J 36:173–185

    Article  PubMed  Google Scholar 

  • Pucihar G, Miklavcic D, Kotnik T (2009) A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells. IEEE Trans Biomed Eng 56:1491–14501

    Article  PubMed  Google Scholar 

  • Ramirez LH, Orlowski S, An D, Bindoula H, Dzodic R, Ardouin P et al (1998) Electrochemotherapy on liver tumours in rabbits. Br J Cancer 77:2104–2111

    CAS  PubMed  Google Scholar 

  • Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nature Rev Cancer 8:108–120

    Article  CAS  Google Scholar 

  • Rizzuto G, Cappelletti M, Malone D, Savino R, Lazzaro D, Costa P, Mathiesen I, Cortese R, Ciliberto G, Laufer R, La Monica N, Fattori E (1999) Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc Natl Acad Sci USA 96:6417–6422

    Article  CAS  PubMed  Google Scholar 

  • Rols MP, Delteil C, Golzio M, Dumond P, Cros S, Teissie J (1998) In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol 16:168–171

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Nakatsuji N (2001) Efficient gene transfer into embryonic mouse brain using in vivo electroporation. Dev Biol 240:237–246

    Article  CAS  PubMed  Google Scholar 

  • Satkauskas S, Bureau MF, Mahfoudi A, Mir LM (2001) Slow accumulation of plasmid in muscle cells: supporting evidence for a mechanism of DNA uptake by receptor-mediated endocytosis. Mol Ther 4:317–323

    Article  CAS  PubMed  Google Scholar 

  • Satkauskas S, Bureau MF, Puc M, Mahfoudi A, Scherman D, Miklavcic D, Mir LM (2002) Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis. Mol Ther 5:133–140

    Article  CAS  PubMed  Google Scholar 

  • Satkauskas S, André F, Bureau MF, Scherman D, Mikkavcic D, Mir LM (2005) Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Hum Gene Ther 16:1194–1201

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Nishikawa M, Takakura Y (2009) Nonviral vector-mediated RNA interference: its gene silencing characteristics and important factors to achieve RNAi-based gene therapy. Adv Drug Deliv Rev 61:760–766

    Article  CAS  PubMed  Google Scholar 

  • Titomirov AV, Sukharev S, Kistanova E (1991) In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta Report 1088:131–134

    CAS  Google Scholar 

  • Trollet C, Scherman D, Bigey P (2008) Delivery of DNA into muscle for treating systemic diseases: advantages and challenges. Methods Mol Biol 423:199–214

    Article  CAS  PubMed  Google Scholar 

  • Tupin E, Poirier B, Bureau MF, Khallou-Laschet J, Vranckx R, Caligiuri G, Gaston AT, Duong JP, Huyen V, Scherman D, Bariéty J, Michel JB, Nicoletti A (2003) Non-viral gene transfer of murine spleen cells achieved by in vivo electroporation. Gene Ther 10:569–579

    Article  CAS  PubMed  Google Scholar 

  • Valic B, Golzio M, Pavlin M, Schatz A, Faurie C, Gabriel B, Teissié J, Rols MP, Miklavcic D (2003) Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. Eur Biophys J 32:519–528

    Article  PubMed  Google Scholar 

  • Vandermeulen G, Staes E, Vanderhaeghen ML, Burea MF, Scherman D, Préat V (2007) Optimisation of intradermal DNA electrotransfer for immunisation. J. Control. Release 124:81–87

    Article  CAS  Google Scholar 

  • Vicat JM, Boisseau S, Jourdes P, Lainé M, Wion D, Bouali-Benazzouz R, Benabid AL, Berger F (2000) Muscle transfection by electroporation with high-voltage and short-pulse currents provides high-level and long-lasting gene expression. Hum Gene Ther 11:909–916

    Article  CAS  PubMed  Google Scholar 

  • Wasungu L, Escoffre JM, Valette A, Teissie J, Rols MP (2009) A 3D in vitro spheroid model as a way to study the mechanisms of electroporation. Int J Pharm in press

  • Widera G, Austin M, Rabussay D, Goldbeck C, Barnett SW, Chen M, Leung L, Otten GR, Thudium K, Selby MJ, Ulmer JB (2000) Increased DNA vaccine delivery and immunigenicity by electroporation in vivo. J Immunol 164:4635–4640

    CAS  PubMed  Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Kuwano K, Maeyama T, Yoshimi M, Hamada N, Fukumoto J, Egashira K, Hiasa K, Takayama K, Nakanishi Y (2007) Gene transfer of soluble transforming growth factor type II receptor by in vivo electroporation attenuates lung injury and fibrosis. J Clin Pathol 60:916–920

    Article  PubMed  Google Scholar 

  • Zhang X, Divangahi M, Ngai P, Santosuosso M, Millar J, Zganiacz A, Wang J, Bramson J, Xing Z (2007) Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine: Enhanced immunogenicity by electroporation and co-expression of GM-CSF transgène. Vaccine 25:1342–1352

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Norton JE, Zhang N, Dean DA (2007) Electroporation-mediated transfer of plasmids to the lung results in reduced TLR9 signaling and inflammation. Gene Ther 14:775–780

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the CNRS, the AFM (Association Française pour les Myopathies) and the region Midi-Pyrénées.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Justin Teissié or Marie-Pierre Rols.

Additional information

Jean-Michel Escoffre and Chloé Mauroy have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escoffre, JM., Mauroy, C., Portet, T. et al. Gene electrotransfer: from biophysical mechanisms to in vivo applications. Biophys Rev 1, 185–191 (2009). https://doi.org/10.1007/s12551-009-0019-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-009-0019-2

Keywords

Navigation