Skip to main content
Log in

Electric Fields in Tumors Exposed to External Voltage Sources: Implication for Electric Field-Mediated Drug and Gene Delivery

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The intratumoral field, which determines the efficiency of electric field-mediated drug and gene delivery, can differ significantly from the applied field. Therefore, we investigated the distribution of the electric field in mouse tumors and tissue phantoms exposed to a large range of electric stimuli, and quantified the resistances of tumor, skin, and electrode-tissue interface. The samples used in the study included 4T1 and B16.F10 tumors, mouse skin, and tissue phantoms constructed with 1% agarose gel with or without 4T1 cells. When pulsed electric fields were applied to samples using a pair of parallel-plate electrodes, we determined the electric field and resistances in each sample as well as the resistance at the electrode-tissue interface. The electric fields in the center region of tissue phantoms and tumor slices ex vivo were macroscopically uniform and unidirectional between two parallel-plate electrodes. The field strengths in tumor tissues were significantly lower than the applied field under both ex vivo and in vivo conditions. During in vivo stimulation, the ratio of intratumoral versus applied fields was approximately either 20% or 55%, depending on the applied field. Meanwhile, the total resistance of skin and electrode-tissue interface was decreased by approximately 70% and the electric resistance at the center of both tumor models was minimally changed when the applied field was increased from 50 to 400 V/cm. These results may be useful for improving electric field-mediated drug and gene delivery in solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.

Similar content being viewed by others

REFERENCES

  1. Brummer, S. B., and M. J. Turner. Electrical stimulation with Pt electrodes: II-estimation of maximum surface redox (theoretical non-gassing) limits. IEEE Trans. Biomed. Eng. 24:440–443, 1977.

    PubMed  CAS  Google Scholar 

  2. Brummer, S. B., and M. J. Turner. Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans. Biomed. Eng. 24:59–63, 1977.

    PubMed  CAS  Google Scholar 

  3. Bureau, M. F., J. Gehl, V. Deleuze, L. M. Mir, and D. Scherman. Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochim. Biophys. Acta 1474:353–359, 2000.

    PubMed  CAS  Google Scholar 

  4. Canatella, P. J., M. M. Black, D. M. Bonnichsen, C. McKenna, and M. R. Prausnitz. Tissue electroporation: quantification and analysis of heterogeneous transport in multicellular environments. Biophys. J. 86:3260–3268, 2004.

    PubMed  CAS  Google Scholar 

  5. Canatella, P. J., J. F. Karr, J. A. Petros, and M. R. Prausnitz. Quantitative study of electroporation-mediated molecular uptake and cell viability. Biophys. J. 80:755–764, 2001.

    Article  PubMed  CAS  Google Scholar 

  6. Cemazar, M., I. Wilson, G. U. Dachs, G. M. Tozer, and G. Sersa. Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy—spatial and time dependent distribution. BMC Cancer. 4:81, 2004.

    Article  PubMed  CAS  Google Scholar 

  7. DeBruin, K. A., and W. Krassowska. Modeling electroporation in a single cell. I. Effects Of field strength and rest potential. Biophys. J. 77:1213–1224, 1999.

    PubMed  CAS  Google Scholar 

  8. Dorgan, S. J., and R. B. Reilly. A model for human skin impedance during surface functional neuromuscular stimulation. IEEE Trans. Rehabil. Eng. 7:341–348, 1999.

    Article  PubMed  CAS  Google Scholar 

  9. Gu, W. Y., and M. A. Justiz. Apparatus for measuring the swelling dependent electrical conductivity of charged hydrated soft tissues. J. Biomech. Eng. 124:790–793, 2002.

    Article  PubMed  CAS  Google Scholar 

  10. Gu, W. Y., W. M. Lai, and V. C. Mow. Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage. J. Biomech. 26:709–723, 1993.

    Article  PubMed  CAS  Google Scholar 

  11. Heller, L., M. J. Jaroszeski, D. Coppola, C. Pottinger, R. Gilbert, and R. Heller. Electrically mediated plasmid DNA delivery to hepatocellular carcinomas in vivo. Gene. Ther. 7:826–829, 2000.

    Article  PubMed  CAS  Google Scholar 

  12. Heller, R., R. Gilbert, and M. J. Jaroszeski. Electrochemotherapy: An emerging drug delivery method for the treatment of cancer. Adv. Drug Deliv. Rev. 26:185–197, 1997.

    Article  PubMed  Google Scholar 

  13. Jadoul, A., J. Bouwstra, and V. V. Preat. Effects of iontophoresis and electroporation on the stratum corneum. Review of the biophysical studies. Adv. Drug Deliv. Rev. 35:89–105, 1999.

    Article  PubMed  CAS  Google Scholar 

  14. Kotnik, T., and D. Miklavcic. Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys. J. 79:670–679, 2000.

    PubMed  CAS  Google Scholar 

  15. Krol, A., M. W. Dewhirst, and F. Yuan. Effects of cell damage and glycosaminoglycan degradation on available extravascular space of different dextrans in a rat fibrosarcoma. Int. J. Hyperthermia. 19:154–164, 2003.

    Article  PubMed  CAS  Google Scholar 

  16. Krol, A., J. Maresca, M. W. Dewhirst, and F. Yuan. Available volume fraction of macromolecules in the extravascular space of a fibrosarcoma: Implications for drug delivery. Cancer Res. 59:4136–4141, 1999.

    PubMed  CAS  Google Scholar 

  17. Lohr, F., D. Y. Lo, D. A. Zaharoff, K. Hu, X. Zhang, Y. Li, Y. Zhao, M. W. Dewhirst, F. Yuan, and C. Y. Li. Effective tumor therapy with plasmid-encoded cytokines combined with in vivo electroporation. Cancer Res. 61:3281–3214, 2001.

    PubMed  CAS  Google Scholar 

  18. Lucas, M. L., L. Heller, D. Coppola, and R. Heller. IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16.F10 melanoma. Mol. Ther. 5:668–675, 2002.

    Article  PubMed  CAS  Google Scholar 

  19. Mir, L. M. Therapeurtic perspectives on in vivo cell electropermeabilization. Bioelectrochemistry 53:1–10, 2000.

    Article  Google Scholar 

  20. Mossop, B. J., R. C. Barr, D. A. Zaharoff, and F. Yuan. Electric fields within cells as a function of membrane resistivity–a model study. IEEE Trans. Nanobioscience 3:225–231, 2004.

    Article  PubMed  Google Scholar 

  21. Neumann, E., S. Kakorin, and K. Toensing. Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem. Bioenerg. 48:3–16, 1999.

    Article  PubMed  CAS  Google Scholar 

  22. Niidome, T., and L. Huang. Gene therapy progress and prospects: nonviral vectors. Gene. Ther. 9:1647–1652, 2002.

    Article  PubMed  CAS  Google Scholar 

  23. Nishikawa, M., and L. Huang. Nonviral vectors in the new millennium: Delivery barriers in gene transfer. Hum. Gene Ther. 12:861–870, 2001.

    Article  PubMed  CAS  Google Scholar 

  24. Panescu, D., J. G. Webster, and R. A. Stratbucker. A nonlinear finite element model of the electrode-electrolyte-skin system. IEEE Trans. Biomed. Eng. 41:681–687, 1994.

    Article  PubMed  CAS  Google Scholar 

  25. Pavlin, M., and D. Miklavcic. Effective conductivity of a suspension of permeabilized cells: a theoretical analysis. Biophys. J. 85:719–729, 2003.

    PubMed  CAS  Google Scholar 

  26. Pavselj, N., Z. Bregar, D. Cukjati, D. Batiuskaite, L. M. Mir, and D. Miklavcic. The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. IEEE Trans. Biomed. Eng. 52:1373–1381, 2005.

    Article  PubMed  Google Scholar 

  27. Prausnitz, M. R., V. G. Bose, R. Langer, and J. C. Weaver. Electroporation of mammalian skin: A mechanism to enhance transdermal drug delivery. Proc. Natl. Acad. Sci. USA 90:10504–10508, 1993.

    Article  PubMed  CAS  Google Scholar 

  28. Sel, D., D. Cukjati, D. Batiuskaite, T. Slivnik, L. M. Mir, and D. Miklavcic. Sequential finite element model of tissue electropermeabilization. IEEE Trans. Biomed. Eng. 52:816–827, 2005.

    Article  PubMed  Google Scholar 

  29. Sersa, G., M. Cemazar, and D. Miklavcic. Antitumor effectiveness of electrochemotherapy with cis-diamminedichl-oroplatinum(II) in mice. Cancer Res. 55:3450–3455, 1995.

    PubMed  CAS  Google Scholar 

  30. Zaharoff, D. A., R. C. Barr, C. Y. Li, and F. Yuan. Electromobility of plasmid DNA in tumor tissues during electric field-mediated gene delivery. Gene Ther. 9:1286–1290, 2002.

    Article  PubMed  CAS  Google Scholar 

  31. Zaharoff, D. A., and F. Yuan. Effects of pulse strength and pulse duration on in vitro DNA electromobility. Bioelectrochemistry 62:37–45, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Ms. Ava Krol for technical assistance. This work was supported in part by a grant from the National Institutes of Health (CA94019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mossop, B.J., Barr, R.C., Henshaw, J.W. et al. Electric Fields in Tumors Exposed to External Voltage Sources: Implication for Electric Field-Mediated Drug and Gene Delivery. Ann Biomed Eng 34, 1564–1572 (2006). https://doi.org/10.1007/s10439-006-9151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9151-3

Keywords

Navigation