Skip to main content
Log in

Fluorescence fluctuation spectroscopy: ushering in a new age of enlightenment for cellular dynamics

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Originally developed for applications in physics and physical chemistry, fluorescence fluctuation spectroscopy is becoming widely used in cell biology. This review traces the development of the method and describes some of the more important applications. Specifically, the methods discussed include fluorescence correlation spectroscopy (FCS), scanning FCS, dual color cross-correlation FCS, the photon counting histogram and fluorescence intensity distribution analysis approaches, the raster scanning image correlation spectroscopy method, and the Number and Brightness technique. The physical principles underlying these approaches will be delineated, and each of the methods will be illustrated using examples from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bacia K, Schwille P (2003) A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy. Methods 29:74–85

    Article  PubMed  CAS  Google Scholar 

  • Bacia K, Majoul IV, Schwille P (2002) Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis. Biophys J 83:1184–1193

    Article  PubMed  CAS  Google Scholar 

  • Bacia K, Kim SA, Schwille P (2006) Fluorescence cross-correlation spectroscopy in living cells. Nat Methods 3:83–89

    Article  PubMed  CAS  Google Scholar 

  • Banks DS, Fradin C (2005) Anomalous diffusion of proteins due to molecular crowding. Biophys J 89:2960–2971

    Article  PubMed  CAS  Google Scholar 

  • Bark N, Földes-Papp Z, Rigler R (1999) The incipient stage in thrombin-induced fibrin polymerization detected by FCS at the single molecule level. Biochem Biophys Res Commun 260:35–41

    Article  PubMed  CAS  Google Scholar 

  • Berland KM (2004) Detection of specific DNA sequences using dual-color two-photon fluorescence correlation spectroscopy. J Biotechnol 108:127–136

    Article  PubMed  CAS  Google Scholar 

  • Berland KM, So PT, Gratton E (1995) Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys J 68:694–701

    Article  PubMed  CAS  Google Scholar 

  • Berland KM, So PT, Chen Y, Mantulin WW, Gratton E (1996) Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation. Biophys J 71:410–420

    Article  PubMed  CAS  Google Scholar 

  • Bestvater F, Spiess E, Stobrawa G, Hacker M, Feurer T, Porwol T, Berchner-Pfannschmidt U, Wotzlaw C, Acker H (2002) Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. J Microsc 208:108–115

    Article  PubMed  CAS  Google Scholar 

  • Borejdo J (1979) Motion of myosin fragments during actin-activated ATPase: fluorescence correlation spectroscopy study. Biopolymers 18:2807–2820

    Article  PubMed  CAS  Google Scholar 

  • Briddon SJ, Hill SJ (2007) Pharmacology under the microscope: the use of fluorescence correlation spectroscopy to determine the properties of ligand-receptor complexes. Trends Pharmacol Sci 28:637–645

    Article  PubMed  CAS  Google Scholar 

  • Brock R, Hink MA, Jovin TM (1998) Fluorescence correlation microscopy of cells in the presence of autofluorescence. Biophys J 75:2547–2557

    Article  PubMed  CAS  Google Scholar 

  • Brown R (1828) A brief account of microscopical observations made in the months of June, July and August 1827 on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Ray Society (1868), London

  • Bulseco DA, Wolf DE (2007) Fluorescence correlation spectroscopy: molecular complexing in solution and in living cells. Methods Cell Biol 81:525–559

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Müller JD (2007) Determining the stoichiometry of protein heterocomplexes in living cells with fluorescence fluctuation spectroscopy. Proc Natl Acad Sci USA 104:3147–3152

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Müller JD, Berland KM, Gratton E (1999) Fluorescence fluctuation spectroscopy. Methods 19:234–252

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Wei LN, Müller JD (2003) Probing protein oligomerization in living cells with fluorescence fluctuation spectroscopy. Proc Natl Acad Sci USA 100:15492–15497

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Wu B, Musier-Forsyth K, Mansky LM, Müller JD (2009) Fluorescence fluctuation spectroscopy on viral-like particles reveals variable gag stoichiometry. Biophys J 96:1961–1969

    Article  PubMed  CAS  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  PubMed  CAS  Google Scholar 

  • Dertinger T, Loman A, Ewers B, Müller CB, Kramer B, Enderlein J (2008) The optics and performance of dual-focus fluorescence correlation spectroscopy. Opt Express 16:14353–14368

    Article  PubMed  CAS  Google Scholar 

  • Dickson RM, Cubitt AB, Tsien RY, Moerner WE (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388:355–358

    Article  PubMed  CAS  Google Scholar 

  • Digman MA, Gratton E (2009) Analysis of diffusion and binding in cells using the RICS approach. Microsc Res Tech 72:323–332

    Article  PubMed  Google Scholar 

  • Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E (2005a) Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 89:1317–1327

    Article  PubMed  CAS  Google Scholar 

  • Digman MA, Sengupta P, Wiseman PW, Brown CM, Horwitz AR, Gratton E (2005b) Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure. Biophys J 88:L33–L36

    Article  PubMed  CAS  Google Scholar 

  • Digman MA, Dalal R, Horwitz AF, Gratton E (2008a) Mapping the number of molecules and brightness in the laser scanning microscope. Biophys J 94:2320–2332

    Article  PubMed  CAS  Google Scholar 

  • Digman MA, Brown CM, Horwitz AR, Mantulin WW, Gratton E (2008b) Paxillin dynamics measured during adhesion assembly and disassembly by correlation spectroscopy. Biophys J 94:2819–2831

    Article  PubMed  CAS  Google Scholar 

  • Digman MA, Wiseman PW, Choi C, Horwitz AR, Gratton E (2009) Stoichiometry of molecular complexes at adhesions in living cells. Proc Natl Acad Sci USA 106:2170–2175

    Article  PubMed  Google Scholar 

  • Dross N, Spriet C, Zwerger M, Müller G, Waldeck W, Langowski J (2009) Mapping eGFP oligomer mobility in living cell nuclei. PLoS ONE 4:e5041

    Article  PubMed  Google Scholar 

  • Eigen M, Rigler R (1994) Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci USA 91:5740–5747

    Article  PubMed  CAS  Google Scholar 

  • Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 322:549–560

    Article  Google Scholar 

  • Elson EL (2004) Quick tour of fluorescence correlation spectroscopy from its inception. J Biomed Opt 9:857–864

    Article  PubMed  CAS  Google Scholar 

  • Elson EL, Magde D (1974). Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13(1):1–27

    Google Scholar 

  • Földes-Papp Z (2006) What it means to measure a single molecule in a solution by fluorescence fluctuation spectroscopy. Exp Mol Pathol 80:209–218

    Article  PubMed  CAS  Google Scholar 

  • Földes-Papp Z (2007a) Fluorescence fluctuation spectroscopic approaches to the study of a single molecule diffusing in solution and a live cell without systemic drift or convection: a theoretical study. Curr Pharm Biotechnol 8:261–273

    Article  PubMed  Google Scholar 

  • Földes-Papp Z (2007b) 'True' single-molecule molecule observations by fluorescence correlation spectroscopy and two-color fluorescence cross-correlation spectroscopy. Exp Mol Pathol 82:147–155

    Article  PubMed  CAS  Google Scholar 

  • Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, Sosinsky GE, Tsien RY, Ellisman MH (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507

    Article  PubMed  CAS  Google Scholar 

  • Garai K, Sureka R, Maiti S (2007) Detecting amyloid-beta aggregation with fiber-based fluorescence correlation spectroscopy. Biophys J 92:L55–L57

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Marcos A, Sanchez SA, Parada P, Eid J, Jameson DM, Remacha M, Gratton E, Ballesta JP (2008) Yeast ribosomal stalk heterogeneity in vivo shown by two-photon FCS and molecular brightness analysis. Biophys J 94:2884–2890

    Article  PubMed  CAS  Google Scholar 

  • Gerard M, Debyser Z, Desender L, Kahle PJ, Baert J, Baekelandt V, Engelborghs Y (2006) The aggregation of alpha-synuclein is stimulated by FK506 binding proteins as shown by fluorescence correlation spectroscopy. FASEB J 20:524–526

    PubMed  CAS  Google Scholar 

  • Gielen E, Smisdom N, vandeVen M, De Clercq B, Gratton E, Digman M, Rigo JM, Hofkens J, Engelborghs Y, Ameloot M (2009) Measuring diffusion of lipid-like probes in artificial and natural membranes by raster image correlation spectroscopy (RICS): use of a commercial laser-scanning microscope with analog detection. Langmuir 25:5209–5218

    Article  PubMed  CAS  Google Scholar 

  • Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272

    Article  PubMed  CAS  Google Scholar 

  • Hazlett TL, Ruan Q, Tetin SY (2005) Application of fluorescence correlation spectroscopy to hapten-antibody binding. Methods Mol Biol 305:415–438

    PubMed  CAS  Google Scholar 

  • Henriksson M, Pramanik A, Shafqat J, Zhong Z, Tally M, Ekberg K, Wahren J, Rigler R, Johansson J, Jornvall H (2001) Specific binding of proinsulin C-peptide to intact and to detergent-solubilized human skin fibroblasts. Biochem Biophys Res Commun 280:423–427

    Article  PubMed  CAS  Google Scholar 

  • Hess ST, Webb WW (2002) Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys J 83:2300–2317

    Article  PubMed  CAS  Google Scholar 

  • Humpolickova J, Gielen E, Benda A, Fagulova V, Vercammen J, Vandeven M, Hof M, Ameloot M, Engelborghs Y (2006) Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys J 91:L23–L25

    Article  PubMed  CAS  Google Scholar 

  • Hwang LC, Wohland T (2007) Recent advances in fluorescence cross-correlation spectroscopy. Cell Biochem Biophys 49:1–13

    Article  PubMed  CAS  Google Scholar 

  • Kask P, Palo K, Ullmann D, Gall K (1999) Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc Natl Acad Sci USA 96:13756–13761

    Article  PubMed  CAS  Google Scholar 

  • Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465–487

    Article  PubMed  CAS  Google Scholar 

  • Kim HM, Cho BR (2009) Two-photon probes for intracellular free metal ions, acidic vesicles, and lipid rafts in live tissues. Acc Chem Res (in press)

  • Kolin DL, Wiseman PW (2007) Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem Biophys 49:141–164

    Article  PubMed  CAS  Google Scholar 

  • Komura H, Matsuda K, Shigemoto Y, Kawahara I, Ano R, Murayama Y, Moriwaki T, Yoshida NH (2005) High throughput screening of pharmacokinetics and metabolism in drug discovery (II)-investigation on in vitro and in vivo correlation in drug metabolism screening. Yakugaku Zasshi 125:131–139

    Article  PubMed  CAS  Google Scholar 

  • Lieto AM, Cush RC, Thompson NL (2003) Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophys J 85:3294–3302

    Article  PubMed  CAS  Google Scholar 

  • Luby-Phelps K (1994) Physical properties of cytoplasm. Curr Opin Cell Biol 6:3–9

    Article  PubMed  CAS  Google Scholar 

  • Madge DE, Elson EL, Webb WW (1972) Thermodynamics fluctuations in a reacting system: measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708

    Google Scholar 

  • Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61

    Article  PubMed  CAS  Google Scholar 

  • Maiti S, Haupts U, Webb WW (1997) Fluorescence correlation spectroscopy: diagnostics for sparse molecules. Proc Natl Acad Sci USA 94:11753–11757

    Article  PubMed  CAS  Google Scholar 

  • Meissner O, Haberlein H (2003) Lateral mobility and specific binding to GABA(A) receptors on hippocampal neurons monitored by fluorescence correlation spectroscopy. Biochemistry 42:1667–1672

    Article  PubMed  CAS  Google Scholar 

  • Müller JD (2004) Cumulant analysis in fluorescence fluctuation spectroscopy. Biophys J 86:3981–3992

    Article  PubMed  CAS  Google Scholar 

  • Müller CB, Loman A, Pacheco V, Koberling F, Willbold D, Richtering W, Enderlein J (2008) Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy. EPL 83:46001p1–46001p5

    Article  CAS  Google Scholar 

  • Nienhaus GU, Wiedenmann J (2009) Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development. ChemPhysChem 10(9-10):1369–1379

    Google Scholar 

  • Nirmal M, Norris DJ, Kuno M, Bawendi MG, Efros AL, Rosen M (1995) Observation of the "Dark exciton" in CdSe quantum dots. Phys Rev Lett 75:3728–3731

    Article  PubMed  CAS  Google Scholar 

  • Orden AV, Jung J (2008) Review fluorescence correlation spectroscopy for probing the kinetics and mechanisms of DNA hairpin formation. Biopolymers 89:1–16

    Article  PubMed  CAS  Google Scholar 

  • Palmer AG 3rd, Thompson NL (1987) Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy. Biophys J 52:257–270

    Article  PubMed  CAS  Google Scholar 

  • Palmer AG 3rd, Thompson NL (1989) High-order fluorescence fluctuation analysis of model protein clusters. Proc Natl Acad Sci USA 86:6148–6152

    Article  PubMed  CAS  Google Scholar 

  • Paradise A, Levin MK, Korza G, Carson JH (2007) Significant proportions of nuclear transport proteins with reduced intracellular mobilities resolved by fluorescence correlation spectroscopy. J Mol Biol 365:50–65

    Article  PubMed  CAS  Google Scholar 

  • Pawlicki M, Collins HA, Denning RG, Anderson HL (2009) Two-photon absorption and the design of two-photon dyes. Angew Chem Int Ed Engl 48:3244–3266

    Article  PubMed  CAS  Google Scholar 

  • Perrin J (1913) Les Atomes. Librairie Felix Alcan, Paris

    Google Scholar 

  • Petersen NO (1986) Scanning fluorescence correlation spectroscopy. I. Theory and simulation of aggregation measurements. Biophys J 49:809–815

    Article  PubMed  CAS  Google Scholar 

  • Petersen NO, Johnson DC, Schlesinger MJ (1986) Scanning fluorescence correlation spectroscopy. II. Application to virus glycoprotein aggregation. Biophys J 49:817–820

    Article  PubMed  CAS  Google Scholar 

  • Petrasek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94:1437–1448

    Article  PubMed  CAS  Google Scholar 

  • Petrasek Z, Hoege C, Mashaghi A, Ohrt T, Hyman AA, Schwille P (2008) Characterization of protein dynamics in asymmetric cell division by scanning fluorescence correlation spectroscopy. Biophys J 95:5476–5486

    Article  PubMed  CAS  Google Scholar 

  • Qian H, Elson EL (1990a) Distribution of molecular aggregation by analysis of fluctuation moments. Proc Natl Acad Sci USA 87:5479–5483

    Article  PubMed  CAS  Google Scholar 

  • Qian H, Elson EL (1990b) On the analysis of high order moments of fluorescence fluctuations. Biophys J 57:375–380

    Article  PubMed  CAS  Google Scholar 

  • Qian H, Elson EL (1991) Analysis of confocal laser-microscope optics for 3-D fluorescence correlation spectroscopy. Appl Optics 30:1185–1195

    Article  CAS  Google Scholar 

  • Rarbach M, Kettling U, Koltermann A, Eigen M (2001) Dual-color fluorescence cross-correlation spectroscopy for monitoring the kinetics of enzyme-catalyzed reactions. Methods 24:104–116

    Article  PubMed  CAS  Google Scholar 

  • Rauer B, Neumann E, Widengren J, Rigler R (1996) Fluorescence correlation spectrometry of the interaction kinetics of tetramethylrhodamin alpha-bungarotoxin with Torpedo californica acetylcholine receptor. Biophys Chem 58:3–12

    Article  PubMed  CAS  Google Scholar 

  • Rhoades E, Ramlall TF, Webb WW, Eliezer D (2006) Quantification of alpha-synuclein binding to lipid vesicles using fluorescence correlation spectroscopy. Biophys J 90:4692–4700

    Article  PubMed  CAS  Google Scholar 

  • Ries J, Petrov EP, Schwille P (2008) Total internal reflection fluorescence correlation spectroscopy: effects of lateral diffusion and surface-generated fluorescence. Biophys J 95:390–399

    Article  PubMed  CAS  Google Scholar 

  • Ries J, Chiantia S, Schwille P (2009) Accurate determination of membrane dynamics with line-scan FCS. Biophys J 96:1999–2008

    Article  PubMed  CAS  Google Scholar 

  • Riesner D (2001) In: Rigler R, Elson E (eds) Fluorescence correlation spectroscopy theory and applications, pp. 225–247

  • Ruan Q, Tetin SY (2008) Applications of dual-color fluorescence cross-correlation spectroscopy in antibody binding studies. Anal Biochem 374:182–195

    Article  PubMed  CAS  Google Scholar 

  • Ruan Q, Cheng MA, Levi M, Gratton E, Mantulin WW (2004) Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). Biophys J 87:1260–1267

    Article  PubMed  CAS  Google Scholar 

  • Sanabria H, Digman MA, Gratton E, Waxham MN (2008) Spatial diffusivity and availability of intracellular calmodulin. Biophys J 95:6002–6015

    Article  PubMed  CAS  Google Scholar 

  • Sanchez SA, Gratton E (2005) Lipid-protein interactions revealed by two-photon microscopy and fluorescence correlation spectroscopy. Acc Chem Res 38:469–477

    Article  PubMed  CAS  Google Scholar 

  • Sanchez SA, Chen Y, Müller JD, Gratton E, Hazlett TL (2001) Solution and interface aggregation states of Crotalus atrox venom phospholipase A2 by two-photon excitation fluorescence correlation spectroscopy. Biochemistry 40:6903–6911

    Article  PubMed  CAS  Google Scholar 

  • Sanchez SA, Brunet JE, Jameson DM, Lagos R, Monasterio O (2004) Tubulin equilibrium unfolding followed by time-resolved fluorescence and fluorescence correlation spectroscopy. Protein Sci 13:81–88

    Article  PubMed  CAS  Google Scholar 

  • Schuler J, Frank J, Trier U, Schafer-Korting M, Saenger W (1999) Interaction kinetics of tetramethylrhodamine transferrin with human transferrin receptor studied by fluorescence correlation spectroscopy. Biochemistry 38:8402–8408

    Article  PubMed  CAS  Google Scholar 

  • Schwille P, Bieschke J, Oehlenschlager F (1997a) Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies. Biophys Chem 66:211–228

    Article  PubMed  CAS  Google Scholar 

  • Schwille P, Meyer-Almes FJ, Rigler R (1997b) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72:1878–1886

    Article  PubMed  CAS  Google Scholar 

  • Sengupta P, Garai K, Balaji J, Periasamy N, Maiti S (2003) Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy. Biophys J 84:1977–1984

    Article  PubMed  CAS  Google Scholar 

  • Skinner JP, Chen Y, Müller JD (2005) Position-sensitive scanning fluorescence correlation spectroscopy. Biophys J 89:1288–1301

    Article  PubMed  CAS  Google Scholar 

  • Smoluchowski M (1906) Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann Phys 21:756–780

    Article  Google Scholar 

  • Sugiki T, Yoshiura C, Kofuku Y, Ueda T, Shimada I, Takahashi H (2009) High-throughput screening of optimal solution conditions for structural biological studies by fluorescence correlation spectroscopy. Protein Sci 18:1115–1120

    Article  PubMed  CAS  Google Scholar 

  • Svedberg T, Inouye K (1911) Eine neue Methode zur Prüfung der Gültigkeit des Boyle-Gay-Lussacschen Gesetzes für Kolloide Lösungen. Zeit Phys Chem 77:145–191

    CAS  Google Scholar 

  • Tjernberg LO, Pramanik A, Bjorling S, Thyberg P, Thyberg J, Nordstedt C, Berndt KD, Terenius L, Rigler R (1999) Amyloid beta-peptide polymerization studied using fluorescence correlation spectroscopy. Chem Biol 6:53–62

    Article  PubMed  CAS  Google Scholar 

  • Unruh JR, Gratton E (2008) Analysis of molecular concentration and brightness from fluorescence fluctuation data with an electron multiplied CCD camera. Biophys J 95:5385–5398

    Article  PubMed  CAS  Google Scholar 

  • Webb WW (2001) Fluorescence correlation spectroscopy: inception, biophysical experimentations, and prospectus. Appl Opt 40:3969–3983

    Article  PubMed  CAS  Google Scholar 

  • Weidtkamp-Peters S, Felekyan S, Bleckmann A, Simon R, Becker W, Kuhnemuth R, Seidel CA (2009) Multiparameter fluorescence image spectroscopy to study molecular interactions. Photochem Photobiol Sci 8:470–480

    Article  PubMed  CAS  Google Scholar 

  • Weissman M, Schindler H, Feher G (1976) Determination of molecular weights by fluctuation spectroscopy: application to DNA. Proc Natl Acad Sci USA 73:2776–2780

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Chen Y, Müller JD (2009a) Fluorescence fluctuation spectroscopy of mCherry in living cells. Biophys J 96:2391–2404

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Corbett AH, Berland KM (2009b) The intracellular mobility of nuclear import receptors and NLS cargoes. Biophys J 96:3840–3849

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Larson DR, Vishwasrao HD, Zipfel WR, Webb WW (2005) Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution. Proc Natl Acad Sci USA 102:14284–14289

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Nicholas James for critically reading the manuscript. This work was supported by National Institutes of Health grant RO1GM076665 (DMJ) and a grant from Allergan, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Jameson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jameson, D.M., Ross, J.A. & Albanesi, J.P. Fluorescence fluctuation spectroscopy: ushering in a new age of enlightenment for cellular dynamics. Biophys Rev 1, 105–118 (2009). https://doi.org/10.1007/s12551-009-0013-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-009-0013-8

Keywords

Navigation