Skip to main content

Fluorescence Correlation Spectroscopy: A Highly Sensitive Tool for Probing Intracellular Molecular Dynamics and Disease Diagnosis

  • Chapter
  • First Online:
Optical Spectroscopic and Microscopic Techniques

Abstract

Fluorescence correlation spectroscopy (FCS) is a very versatile and powerful technique that is based on time-averaging fluctuation analysis of fluorescence intensity generated in a tiny volume and can easily achieve single-molecule sensitivity. Briefly, in FCS, the fluctuations in fluorescence are recorded as a function of time and subsequently statistically analyzed by autocorrelation analysis. FCS helps to determine concentrations, diffusional dynamics, molecular interactions, intersystem crossing, and excited-state reactions of fluorescent species. Recent advances in related methods have pushed the frontiers such that FCS can now be applied to increasingly complex systems such as live cells and organisms to obtain quantitative data at physiological concentrations. In this chapter, we provide a brief overview of the basic principle of FCS, the experimental aspects, including the FCS data analysis, and emerging and efficient varieties of FCS that are currently being used to probe intracellular molecular dynamics and serve as a diagnostic tool for various disease conditions and characterization of biomedical samples. We intend to motivate the reader to appreciate the versatility of FCS as a tool being used in a plethora of disciplines ranging from photophysics to biophysical to biomedical sciences and across in vitro and in vivo systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen H, Farkas ER, Webb WW (2008) Chapter 1: In vivo applications of fluorescence correlation spectroscopy. Methods Cell Biol 89:3–35

    Article  CAS  PubMed  Google Scholar 

  2. Magde D, Elson E, Webb WW (1972) Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29(11):705

    Article  CAS  Google Scholar 

  3. Vukojevic V, Pramanik A, Yakovleva T, Rigler R, Terenius L, Bakalkin G (2005) Study of molecular events in cells by fluorescence correlation spectroscopy. Cell Mol Life Sci 62(5):535–550

    Article  CAS  PubMed  Google Scholar 

  4. Ehrenberg M, Rigler R (1976) Fluorescence correlation spectroscopy applied to rotational diffusion of macromolecules. Q Rev Biophys 9(1):69–81

    Article  CAS  PubMed  Google Scholar 

  5. Ries J, Schwille P (2012) Fluorescence correlation spectroscopy. BioEssays 34(5):361–368

    Article  PubMed  Google Scholar 

  6. Kim SA, Heinze KG, Schwille P (2007) Fluorescence correlation spectroscopy in living cells. Nat Methods 4(11):963–973

    Article  CAS  PubMed  Google Scholar 

  7. Digman MA, Gratton E (2011) Lessons in fluctuation correlation spectroscopy. Annu Rev Phys Chem 62:645–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dertinger T, Pacheco V, von der Hocht I, Hartmann R, Gregor I, Enderlein J (2007) Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. ChemPhysChem 8(3):433–443

    Article  CAS  PubMed  Google Scholar 

  9. Machan R, Wohland T (2014) Recent applications of fluorescence correlation spectroscopy in live systems. FEBS Lett 588(19):3571–3584

    Article  CAS  PubMed  Google Scholar 

  10. Levin MK, Carson JH (2004) Fluorescence correlation spectroscopy and quantitative cell biology. Differentiation 72(1):1–10

    Article  CAS  PubMed  Google Scholar 

  11. Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13(1):29–61

    Article  CAS  PubMed  Google Scholar 

  12. Rigler R, Földes-Papp Z, Meyer-Almes F-J, Sammet C, Völcker M, Schnetz A (1998) Fluorescence cross-correlation: a new concept for polymerase chain reaction. J Biotechnol 63(2):97–109

    Article  CAS  PubMed  Google Scholar 

  13. Rika J, Binkert T (1989) Direct measurement of a distinct correlation function by fluorescence cross correlation. Phys Rev A Gen Phys 39(5):2646–2652

    Article  CAS  PubMed  Google Scholar 

  14. Camacho A, Korn K, Damond M, Cajot JF, Litborn E, Liao B, Thyberg P, Winter H, Honegger A, Gardellin P, Rigler R (2004) Direct quantification of mRNA expression levels using single molecule detection. J Biotechnol 107(2):107–114

    Article  CAS  PubMed  Google Scholar 

  15. Rarbach M, Kettling U, Koltermann A, Eigen M (2001) Dual-color fluorescence cross-correlation spectroscopy for monitoring the kinetics of enzyme-catalyzed reactions. Methods 24(2):104–116

    Article  CAS  PubMed  Google Scholar 

  16. Kettling U, Koltermann A, Schwille P, Eigen M (1998) Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc Natl Acad Sci U S A 95(4):1416–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rigler R, Foldes-Papp Z, Meyer-Almes FJ, Sammet C, Volcker M, Schnetz A (1998) Fluorescence cross-correlation: a new concept for polymerase chain reaction. J Biotechnol 63(2):97–109

    Article  CAS  PubMed  Google Scholar 

  18. Strohner R, Wachsmuth M, Dachauer K, Mazurkiewicz J, Hochstatter J, Rippe K, Langst G (2005) A ‘loop recapture’ mechanism for ACF-dependent nucleosome remodeling. Nat Struct Mol Biol 12(8):683–690

    Article  CAS  PubMed  Google Scholar 

  19. Hwang LC, Wohland T (2007) Recent advances in fluorescence cross-correlation spectroscopy. Cell Biochem Biophys 49(1):1–13

    Article  CAS  PubMed  Google Scholar 

  20. Petrasek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94(4):1437–1448

    Article  CAS  PubMed  Google Scholar 

  21. Berland KM, So PT, Chen Y, Mantulin WW, Gratton E (1996) Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation. Biophys J 71(1):410–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Petersen NO (1986) Scanning fluorescence correlation spectroscopy. I. Theory and simulation of aggregation measurements. Biophys J 49(4):809–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Petrasek Z, Derenko S, Schwille P (2011) Circular scanning fluorescence correlation spectroscopy on membranes. Opt Express 19(25):25006–25021

    Article  CAS  PubMed  Google Scholar 

  24. Gunther G, Jameson DM, Aguilar J, Sanchez SA (2018) Scanning fluorescence correlation spectroscopy comes full circle. Methods 140–141:52–61

    Article  PubMed  Google Scholar 

  25. Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21(11):1347–1355

    Article  CAS  PubMed  Google Scholar 

  26. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6(1):24–32

    Article  CAS  PubMed  Google Scholar 

  27. Clausen MP, Sezgin E, Bernardino de la Serna J, Waithe D, Lagerholm BC, Eggeling C (2015) A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics. Methods 88:67–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kastrup L, Blom H, Eggeling C, Hell SW (2005) Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys Rev Lett 94(17):178104

    Article  PubMed  Google Scholar 

  29. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233):1159–1162

    Article  CAS  PubMed  Google Scholar 

  30. Chen Y, Muller JD, Berland KM, Gratton E (1999) Fluorescence fluctuation spectroscopy. Methods 19(2):234–252

    Article  CAS  PubMed  Google Scholar 

  31. Hess ST, Huang S, Heikal AA, Webb WW (2002) Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41(3):697–705

    Article  CAS  PubMed  Google Scholar 

  32. Bacia K, Schwille P (2003) A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy. Methods 29(1):74–85

    Article  CAS  PubMed  Google Scholar 

  33. Enderlein J, Gregor I, Patra D, Fitter J (2004) Art and artefacts of fluorescence correlation spectroscopy. Curr Pharm Biotechnol 5(2):155–161

    Article  CAS  PubMed  Google Scholar 

  34. Marrocco M (2004) Fluorescence correlation spectroscopy: incorporation of probe volume effects into the three-dimensional Gaussian approximation. Appl Opt 43(27):5251–5262

    Article  CAS  PubMed  Google Scholar 

  35. Nishimura G, Kinjo M (2004) Systematic error in fluorescence correlation measurements identified by a simple saturation model of fluorescence. Anal Chem 76(7):1963–1970

    Article  CAS  PubMed  Google Scholar 

  36. Lee W, Lee YI, Lee J, Davis LM, Deininger P, Soper SA (2010) Cross-talk-free dual-color fluorescence cross-correlation spectroscopy for the study of enzyme activity. Anal Chem 82(4):1401–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tian Y, Martinez MM, Pappas D (2011) Fluorescence correlation spectroscopy: a review of biochemical and microfluidic applications. Appl Spectrosc 65(4):115–124

    Article  PubMed Central  Google Scholar 

  38. Mutze J, Petrasek Z, Schwille P (2007) Independence of maximum single molecule fluorescence count rate on the temporal and spectral laser pulse width in two-photon FCS. J Fluoresc 17(6):805–810

    Article  PubMed  Google Scholar 

  39. Kim SA, Heinze KG, Bacia K, Waxham MN, Schwille P (2005) Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry. Biophys J 88(6):4319–4336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen J, Irudayaraj J (2010) Fluorescence lifetime cross correlation spectroscopy resolves EGFR and antagonist interaction in live cells. Anal Chem 82(15):6415–6421

    Article  CAS  PubMed  Google Scholar 

  41. Leutenegger M, Gosch M, Perentes A, Hoffmann P, Martin OJ, Lasser T (2006) Confining the sampling volume for Fluorescence Correlation Spectroscopy using a sub-wavelength sized aperture. Opt Express 14(2):956–969

    Article  CAS  PubMed  Google Scholar 

  42. Leutenegger M, Blom H, Widengren J, Eggeling C, Gosch M, Leitgeb RA, Lasser T (2006) Dual-color total internal reflection fluorescence cross-correlation spectroscopy. J Biomed Opt 11(4):040502

    Article  PubMed  Google Scholar 

  43. Hui YY, Zhang B, Chang YC, Chang CC, Chang HC, Hsu JH, Chang K, Chang FH (2010) Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells. Opt Express 18(6):5896–5905

    Article  CAS  PubMed  Google Scholar 

  44. Etienne E, Lenne PF, Sturgis JN, Rigneault H (2006) Confined diffusion in tubular structures analyzed by fluorescence correlation spectroscopy on a mirror. Appl Opt 45(18):4497–4507

    Article  PubMed  Google Scholar 

  45. Arkhipov A, Huve J, Kahms M, Peters R, Schulten K (2007) Continuous fluorescence microphotolysis and correlation spectroscopy using 4Pi microscopy. Biophys J 93(11):4006–4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Herrmann M, Neuberth N, Wissler J, Perez J, Gradl D, Naber A (2009) Near-field optical study of protein transport kinetics at a single nuclear pore. Nano Lett 9(9):3330–3336

    Article  CAS  PubMed  Google Scholar 

  47. Lu G, Lei FH, Angiboust JF, Manfait M (2010) Confined detection volume of fluorescence correlation spectroscopy by bare fiber probes. Eur Biophys J 39(5):855–860

    Article  CAS  PubMed  Google Scholar 

  48. Kohler RH, Schwille P, Webb WW, Hanson MR (2000) Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy. J Cell Sci 113(Pt 22):3921–3930

    Article  CAS  PubMed  Google Scholar 

  49. Kohler RH, Cao J, Zipfel WR, Webb WW, Hanson MR (1997) Exchange of protein molecules through connections between higher plant plastids. Science 276(5321):2039–2042

    Article  CAS  PubMed  Google Scholar 

  50. Schwille P, Haupts U, Maiti S, Webb WW (1999) Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J 77(4):2251–2265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rigler R, Pramanik A, Jonasson P, Kratz G, Jansson OT, Nygren P, Stahl S, Ekberg K, Johansson B, Uhlen S, Uhlen M, Jornvall H, Wahren J (1999) Specific binding of proinsulin C-peptide to human cell membranes. Proc Natl Acad Sci U S A 96(23):13318–13323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Politz JC, Browne ES, Wolf DE, Pederson T (1998) Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc Natl Acad Sci U S A 95(11):6043–6048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298(4):677–689

    Article  CAS  PubMed  Google Scholar 

  54. Partikian A, Olveczky B, Swaminathan R, Li Y, Verkman AS (1998) Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J Cell Biol 140(4):821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275(3):1625–1629

    Article  CAS  PubMed  Google Scholar 

  56. Bacia K, Majoul IV, Schwille P (2002) Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis. Biophys J 83(2):1184–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Korn K, Gardellin P, Liao B, Amacker M, Bergstrom A, Bjorkman H, Camacho A, Dorhofer S, Dorre K, Enstrom J, Ericson T, Favez T, Gosch M, Honegger A, Jaccoud S, Lapczyna M, Litborn E, Thyberg P, Winter H, Rigler R (2003) Gene expression analysis using single molecule detection. Nucleic Acids Res 31(16):e89

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jermutus L, Kolly R, Foldes-Papp Z, Hanes J, Rigler R, Pluckthun A (2002) Ligand binding of a ribosome-displayed protein detected in solution at the single molecule level by fluorescence correlation spectroscopy. Eur Biophys J 31(3):179–184

    Article  CAS  PubMed  Google Scholar 

  59. Pick H, Preuss AK, Mayer M, Wohland T, Hovius R, Vogel H (2003) Monitoring expression and clustering of the ionotropic 5HT3 receptor in plasma membranes of live biological cells. Biochemistry 42(4):877–884

    Article  CAS  PubMed  Google Scholar 

  60. Terada S, Kinjo M, Hirokawa N (2000) Oligomeric tubulin in large transporting complex is transported via kinesin in squid giant axons. Cell 103(1):141–155

    Article  CAS  PubMed  Google Scholar 

  61. Boukari H, Nossal R, Sackett DL (2003) Stability of drug-induced tubulin rings by fluorescence correlation spectroscopy. Biochemistry 42(5):1292–1300

    Article  CAS  PubMed  Google Scholar 

  62. Wawrezinieck L, Rigneault H, Marguet D, Lenne PF (2005) Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J 89(6):4029–4042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Triffo SB, Huang HH, Smith AW, Chou ET, Groves JT (2012) Monitoring lipid anchor organization in cell membranes by PIE-FCCS. J Am Chem Soc 134(26):10833–10842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Oikawa D, Kitamura A, Kinjo M, Iwawaki T (2012) Direct association of unfolded proteins with mammalian ER stress sensor, IRE1beta. PLoS One 7(12):e51290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shahzad A, Edetsberger M, Koehler G (2010) Fluorescence spectroscopy: an emerging excellent diagnostic tool in medical sciences. Appl Spectrosc Rev 45(1):1–11

    Article  CAS  Google Scholar 

  66. Kilpatrick LE, Hill SJ (2016) The use of fluorescence correlation spectroscopy to characterize the molecular mobility of fluorescently labelled G protein-coupled receptors. Biochem Soc Trans 44(2):624–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Briddon SJ, Kilpatrick LE, Hill SJ (2018) Studying GPCR pharmacology in membrane microdomains: fluorescence correlation spectroscopy comes of age. Trends Pharmacol Sci 39(2):158–174

    Article  CAS  PubMed  Google Scholar 

  68. Weis WI, Kobilka BK (2018) The molecular basis of G protein-coupled receptor activation. Annu Rev Biochem 87:897–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ward RJ, Pediani JD, Godin AG, Milligan G (2015) Regulation of oligomeric organization of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor observed by spatial intensity distribution analysis. J Biol Chem 290(20):12844–12857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Calizo RC, Scarlata S (2013) Discrepancy between fluorescence correlation spectroscopy and fluorescence recovery after photobleaching diffusion measurements of G-protein-coupled receptors. Anal Biochem 440(1):40–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kluba M, Engelborghs Y, Hofkens J, Mizuno H (2015) Inhibition of receptor dimerization as a novel negative feedback mechanism of EGFR signaling. PLoS One 10(10):e0139971

    Article  PubMed  PubMed Central  Google Scholar 

  72. Presman DM, Ganguly S, Schiltz RL, Johnson TA, Karpova TS, Hager GL (2016) DNA binding triggers tetramerization of the glucocorticoid receptor in live cells. Proc Natl Acad Sci U S A 113(29):8236–8241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sigurdson CJ, Bartz JC, Glatzel M (2019) Cellular and molecular mechanisms of Prion disease. Annu Rev Pathol 14:497–516

    Article  CAS  PubMed  Google Scholar 

  74. Bieschke J, Giese A, Schulz-Schaeffer W, Zerr I, Poser S, Eigen M, Kretzschmar H (2000) Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets. Proc Natl Acad Sci U S A 97(10):5468–5473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fujii F, Horiuchi M, Ueno M, Sakata H, Nagao I, Tamura M, Kinjo M (2007) Detection of prion protein immune complex for bovine spongiform encephalopathy diagnosis using fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy. Anal Biochem 370(2):131–141

    Article  CAS  PubMed  Google Scholar 

  76. DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14(1):32

    Article  PubMed  PubMed Central  Google Scholar 

  77. Pitschke M, Prior R, Haupt M, Riesner D (1998) Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy. Nat Med 4(7):832–834

    Article  CAS  PubMed  Google Scholar 

  78. Chatterjee M, Noding B, Willemse EAJ, Koel-Simmelink MJA, van der Flier WM, Schild D, Teunissen CE (2017) Detection of contactin-2 in cerebrospinal fluid (CSF) of patients with Alzheimer’s disease using Fluorescence Correlation Spectroscopy (FCS). Clin Biochem 50(18):1061–1066

    Article  CAS  PubMed  Google Scholar 

  79. Lammers T, Kiessling F, Hennink WE, Storm G (2012) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 161(2):175–187

    Article  CAS  PubMed  Google Scholar 

  80. Negwer I, Best A, Schinnerer M, Schafer O, Capeloa L, Wagner M, Schmidt M, Mailander V, Helm M, Barz M, Butt HJ, Koynov K (2018) Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy. Nat Commun 9(1):5306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Salmond GP, Fineran PC (2015) A century of the phage: past, present and future. Nat Rev Microbiol 13(12):777–786

    Article  CAS  PubMed  Google Scholar 

  82. Briandet R, Lacroix-Gueu P, Renault M, Lecart S, Meylheuc T, Bidnenko E, Steenkeste K, Bellon-Fontaine MN, Fontaine-Aupart MP (2008) Fluorescence correlation spectroscopy to study diffusion and reaction of bacteriophages inside biofilms. Appl Environ Microbiol 74(7):2135–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ross CA, Poirier MA (2005) Opinion: what is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 6(11):891–898

    Article  CAS  PubMed  Google Scholar 

  84. Carrell RW, Lomas DA (1997) Conformational disease. Lancet 350(9071):134–138

    Article  CAS  PubMed  Google Scholar 

  85. Owen MJ, Sawa A, Mortensen PB (2016) Schizophrenia. Lancet 388(10039):86–97

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jiang J, Chen X, Sun L, Qing Y, Yang X, Hu X, Yang C, Xu T, Wang J, Wang P, He L, Dong C, Wan C (2018) Analysis of the concentrations and size distributions of cell-free DNA in schizophrenia using fluorescence correlation spectroscopy. Transl Psychiatry 8(1):104

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ono T, Mimuro J, Madoiwa S, Soejima K, Kashiwakura Y, Ishiwata A, Takano K, Ohmori T, Sakata Y (2006) Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood 107(2):528–534

    Article  CAS  PubMed  Google Scholar 

  88. Chion CK, Doggen CJ, Crawley JT, Lane DA, Rosendaal FR (2007) ADAMTS13 and von Willebrand factor and the risk of myocardial infarction in men. Blood 109(5):1998–2000

    Article  CAS  PubMed  Google Scholar 

  89. Nguyen TC, Carcillo JA (2007) Understanding the role of von Willebrand factor and its cleaving protease ADAM TS13 in the pathophysiology of critical illness. Pediatr Crit Care Med 8(2):187–189

    Article  PubMed  Google Scholar 

  90. Torres R, Genzen JR, Levene MJ (2012) Clinical measurement of von Willebrand factor by fluorescence correlation spectroscopy. Clin Chem 58(6):1010–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Koppel DE, Axelrod D, Schlessinger J, Elson EL, Webb WW (1976) Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J 16(11):1315–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Webb WW (2001) Fluorescence correlation spectroscopy: inception, biophysical experimentations, and prospectus. Appl Opt 40(24):3969–3983

    Article  CAS  PubMed  Google Scholar 

  93. Das AK, Pandit R, Maiti S (2015) Effect of amyloids on the vesicular machinery: implications for somatic neurotransmission. Philos Trans R Soc Lond Ser B Biol Sci 370(1672):20140187

    Article  Google Scholar 

  94. Das AK, Rawat A, Bhowmik D, Pandit R, Huster D, Maiti S (2015) An early folding contact between Phe19 and Leu34 is critical for amyloid-beta oligomer toxicity. ACS Chem Neurosci 6(8):1290–1295

    Article  CAS  PubMed  Google Scholar 

  95. Bera K, Das AK, Nag M, Basak S (2014) Development of a rhodamine-rhodanine-based fluorescent mercury sensor and its use to monitor real-time uptake and distribution of inorganic mercury in live zebrafish larvae. Anal Chem 86(5):2740–2746

    Article  CAS  PubMed  Google Scholar 

  96. Chandra B, Mithu VS, Bhowmik D, Das AK, Sahoo B, Maiti S, Madhu PK (2017) Curcumin dictates divergent fates for the central salt bridges in amyloid-beta40 and amyloid-beta42. Biophys J 112(8):1597–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bhowmik D, Das AK, Maiti S (2015) Rapid, cell-free assay for membrane-active forms of amyloid-beta. Langmuir 31(14):4049–4053

    Article  CAS  PubMed  Google Scholar 

  98. Maity BK, Das AK, Dey S, Moorthi UK, Kaur A, Dey A, Surendran D, Pandit R, Kallianpur M, Chandra B, Chandrakesan M, Arumugam S, Maiti S (2019) Ordered and disordered segments of amyloid-beta drive sequential steps of the toxic pathway. ACS Chem Neurosci 10(5):2498–2509

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umakanta Tripathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Swain, B.C., Das, A.K., Rout, J., Biswas, S., Tripathy, U. (2022). Fluorescence Correlation Spectroscopy: A Highly Sensitive Tool for Probing Intracellular Molecular Dynamics and Disease Diagnosis. In: Sahoo, H. (eds) Optical Spectroscopic and Microscopic Techniques. Springer, Singapore. https://doi.org/10.1007/978-981-16-4550-1_8

Download citation

Publish with us

Policies and ethics