Skip to main content
Log in

Recent Advances in Fluorescence Cross-correlation Spectroscopy

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Fluorescence cross-correlation spectroscopy (FCCS) is a method that measures the temporal fluorescence fluctuations coming from two differently labeled molecules diffusing through a small sample volume. Cross-correlation analysis of the fluorescence signals from separate detection channels extracts information of the dynamics of the dual-labeled molecules. FCCS has become an essential tool for the characterization of diffusion coefficients, binding constants, kinetic rates of binding, and determining molecular interactions in solutions and cells. By cross-correlating between two focal spots, flow properties could also be measured. Recent developments in FCCS have been targeted at using different experimental schemes to improve on the sensitivity and address their limitations such as cross-talk and alignment issues. This review presents an overview of the different excitation and detection methodologies used in FCCS and their biological applications. This is followed by a description of the fluorescent probes currently available for the different methods. This will introduce biological readers to FCCS and its related techniques and provide a starting point to selecting which experimental scheme is suitable for their type of biological study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Magde, D., Elson, E. L., & Webb, W. W. (1972). Thermodynamic fluctuations in a reacting system: Measurements by fluorescence correlation spectroscopy. Physical Review Letters, 29, 705–708.

    CAS  Google Scholar 

  2. Elson, E. L., & Magde, M. (1974). Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers, 13, 1–27.

    CAS  Google Scholar 

  3. Magde, D., Elson, E. L., & Webb, W. W. (1974). Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers, 13, 29–61.

    PubMed  CAS  Google Scholar 

  4. Koppel, D. E. (1974). Statistical accuracy in fluorescence correlation spectroscopy. Physical Review A, 10, 1938–1945.

    Google Scholar 

  5. Koppel, D. E., Axelrod, D., Schlessinger, J., Elson, E. L., & Webb, W. W. (1976). Dynamics of fluorescence marker concentration as a probe of mobility. Biophysical Journal, 16, 1315–1329.

    PubMed  CAS  Google Scholar 

  6. Qian, H., & Elson, E. (1991). Analysis of confocal laser-microscope optics for 3-d fluorescence correlation spectroscopy. Applied Optics, 30, 1185–1195.

    CAS  Google Scholar 

  7. Rigler, R., Mets, Ü., Widengren, J., & Kask, P. (1993). Fluorescence correlation spectroscopy with high count rate and low background – analysis of translational diffusion. European Biophysics Journal, 22, 169–175.

    CAS  Google Scholar 

  8. Thompson, N. L. (1991). Fluorescence correlation spectroscopy. In J. R. Lakowicz (Ed.), Topics in fluorescence spectroscopy, Vol. 1. Techniques (pp. 337–378). New York: Plenum Press.

  9. Ehrenberg, M., & Rigler, R. (1974). Rotational brownian motion and fluorescence intensity fluctuations. Chemical Physics, 4, 390–401.

    CAS  Google Scholar 

  10. Aragon, S. R., & Pecora, R. (1975). Fluroescence correlation spectroscopy and brownian rotational diffusion. Biopolymers, 14, 119–138.

    CAS  Google Scholar 

  11. Kask, P., Piksarv, P., Mets, Ü., & Lippmaa, E. (1987). Fluroescence correlation spectroscopy in the nanosecond time range: Rotational diffusion of bovin carbonic anhydrase. European Biophysics Journal, 14, 257–261.

    PubMed  CAS  Google Scholar 

  12. Kask, P., Piksarv, P., Pooga, M., Mets, Ü., & Lippmaa, E. (1988). Separation of the rotational contribution in fluorescence correlation measurements. Biophysical Journal, 55, 213–220.

    Google Scholar 

  13. Gösch, M., Blom, H., Holm, J., Heino, T., & Rigler, R. (2000). Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy. Analytical Chemistry, 72, 3260–3265.

    PubMed  Google Scholar 

  14. Petersen, N., & Elson, E. (1986). Measurements of diffusion and chemical kinetics by fluorescence photobleaching recovery fluorescence correlation spectroscopy. Methods in Enzymology, 130, 454–484.

    Article  PubMed  CAS  Google Scholar 

  15. Widengren, J., & Rigler, R. (1998). Fluorescence correlation spectroscopy as a tool to investigate chemical reactions in solutions and on cell surfaces. Cellular and Molecular Biology, 44, 857–879.

    PubMed  CAS  Google Scholar 

  16. Rauer, B., Neumann, E., Widengren, J., & Rigler, R. (1996). Fluorescence correlation spectrometry of interaction kinetics of tetramethylrhodamine alpha-bungarotoxin with torpedo califonica acetylcholine receptor. Biophysical Chemistry, 58, 3–12.

    PubMed  CAS  Google Scholar 

  17. Craenenbroeck, E. V., & Engelborghs, Y. (1999). Quantitative characterization of the binding of fluorescently labeled colchicine to tubulin in vitro using fluorescence correlation spectroscopy. Biochemistry, 38, 5082–5088.

    PubMed  Google Scholar 

  18. Wohland, T., Friedrich, K., Hovius, R., & Vogel, H. (1999). Study of ligand–receptor interactions by fluorescence correlation spectroscopy with different fluorophores: Evidence that the homopentameric 5-hydroxytryptamine type 3As receptor binds only one ligand. Biochemistry, 38, 8671–8681.

    PubMed  CAS  Google Scholar 

  19. Meseth, U., Wohland, T., Rigler, R., & Vogel, H. (1999). Resolution of fluorescence correlation measurements. Biophysical Journal, 76, 1619–1631.

    PubMed  CAS  Google Scholar 

  20. Kam, Z., & Rigler, R. (1982). Cross-correlation laser scattering. Biophysical Journal, 39, 7–13.

    PubMed  CAS  Google Scholar 

  21. Ricka, J., & Binkert, T. (1989). Direct measurement of a distinct correlation-function by fluorescence cross-correlation. Physical Review A, 39, 2646–2652.

    CAS  Google Scholar 

  22. Eigen, M., & Rigler, R. (1994). Sorting single molecules: Applications to diagnostics and evolutionary biotechnology. Proceedings of the National Academy of Sciences of the USA, 91, 5740–5747.

    PubMed  CAS  Google Scholar 

  23. Schwille, P., Meyer-Almes, F. J., & Rigler, R. (1997). Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophysical Journal, 72, 1878–1886.

    PubMed  CAS  Google Scholar 

  24. Bacia, K., & Schwille, P. (2003). A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy. Methods, 29, 74–85.

    PubMed  CAS  Google Scholar 

  25. Bacia, K., Kim, S. A., & Schwille, P. (2006). Fluorescence cross-correlation spectroscopy in living cells. Nature Methods, 3, 83–89.

    PubMed  CAS  Google Scholar 

  26. Rigler, R., Foldes-Papp, Z., Meyer-Almes, F. J., Sammet, C., Volcker, M., & Schnetz, A. (1998). Fluorescence cross-correlation: A new concept for polymerase chain reaction. Journal of Biotechnology, 63, 97–109.

    PubMed  CAS  Google Scholar 

  27. Foldes-Papp, Z., & Rigler, R. (2001). Quantitative two-color fluorescence cross-correlation spectroscopy in the analysis of polymerase chain reaction. Biological Chemistry, 382, 473–478.

    PubMed  CAS  Google Scholar 

  28. Camacho, A., Korn, K., Damond, M., Cajot, J.-F., Litborn, E., Liao, B., Thyberg, P., Winter, H., Honegger, A., Gardellin, P., & Rigler, R. (2004). Direct quantifcation of mRNA expression levels using single molecule detection. Journal of Biotechnology, 107, 107–114.

    PubMed  CAS  Google Scholar 

  29. Korn, K., Gardellin, P., Liao, B., Amacker, M., Bergstrom, A., Bjorkman, H., Camacho, A., Dorhofer, S., Dorre, K., Enstrom, J., Ericson, T., Favez, T., Gösch, M., Honegger, A., Jaccoud, S., Lapczyna, M., Litborn, E., Thyberg, P., Winter, H., & Rigler, R. (2003). Gene expression analysis using single molecule detection. Nucleic Acids Research, 31, e89.

    PubMed  Google Scholar 

  30. Kettling, U., Koltermann, A., Schwille, P., & Eigen, M. (1998). Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proceedings of the National Academy of Sciences of the USA, 95, 1416–1420.

    PubMed  CAS  Google Scholar 

  31. Rarbach, M., Kettling, U., Koltermann, A., & Eigen, M. (2001). Dual-color fluorescence cross-correlation spectroscopy for monitoring the kinetics of enzyme-catalyzed reactions. Methods, 24, 104–116.

    PubMed  CAS  Google Scholar 

  32. Rippe, K. (2000). Simultaneous binding of two DNA duplexes to the NtrC-enhancer complex studied by two-color fluorescence cross-correlation spectroscopy. Biochemistry, 39, 2131–2139.

    PubMed  CAS  Google Scholar 

  33. Strohner, R., Wachsmuth, M., Dachauer, K., Mazurkiewicz, J., Hochstatter, J., Rippe, K., & Langst, G. (2005). A loop recapture mechanism for ACF-dependent nucleosome remodeling. Nature Structural and Molecular Biology, 12, 683–690.

    PubMed  CAS  Google Scholar 

  34. Jahnz, M., & Schwille, P. (2005). An ultrasensitive site-speci.c DNA recombination assay based on dual-color fluorescence cross-correlation spectroscopy. Nucleic Acids Research, 33, e60.

    PubMed  Google Scholar 

  35. Jahnz, M., Medina, M. A., & Schwille, P. (2005). A novel homogenous assay for topoisomerase II action and inhibition. Chembiochem, 6, 920–926.

    PubMed  CAS  Google Scholar 

  36. Bacia, K., Schuette, C. G., Kahya, N., Jahn, R., & Schwille, P. (2004). SNAREs prefer liquid-disordered over “raft” (liquid-ordered) domains when reconstituted into giant unilamellar vesicles. Journal of Biological Chemistry, 279, 37951–37955.

    PubMed  CAS  Google Scholar 

  37. Bacia, K., Majoul, I. V., & Schwille, P. (2002). Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis. Biophysical Journal, 83, 1184–1193.

    PubMed  CAS  Google Scholar 

  38. Schwille, P. (2001). Cross-correlation analysis in FCS. In E. L. Elson & R. Rigler (Eds.), Fluorescence correlation spectroscopy. Theory and applications (pp. 360–378). Springer.

  39. Weidemann, T., Wachsmuth, M., Tewes, M., Rippe, K., & Langowski, J. (2002). Analysis of ligand binding by two-color fluorescence cross-correlation spectroscopy. Single Molecules, 3, 49–61.

    Google Scholar 

  40. Kassies, R., Lenferink, A., Segers-Nolten, I., & Otto, C. (2005). Prism-based excitation wavelength selection for multicolor fluorescence coincidence measurements. Applied Optics, 44, 893–897.

    PubMed  CAS  Google Scholar 

  41. Winkler, T., Kettling, U., Koltermann, A., & Eigen, M. (1999). Confocal fluorescence coincidence analysis: An approach to ultra high-throughput screening. Proceedings of the National Academy of Sciences of the USA, 96, 1375–1378.

    PubMed  CAS  Google Scholar 

  42. Heinze, K. G., Koltermann, A., & Schwille, P. (2000). Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscorrelation analysis. Proceedings of the National Academy of Sciences of the USA, 97, 10377–10382.

    PubMed  CAS  Google Scholar 

  43. Hwang, L. C., & Wohland, T. (2004). Dual-color fluorescence cross-correlation spectroscopy using single laser wavelength excitation. Chemphyschem, 5, 549–551.

    PubMed  CAS  Google Scholar 

  44. Hwang, L. C., & Wohland, T. (2005). Single wavelength excitation fluorescence cross-correlation spectroscopy with spectrally similar fluorophores: resolution for binding studies. Journal of Chemical Physics, 122, 114708.

    PubMed  Google Scholar 

  45. Hwang, L. C., Gösch, M., Lasser, T., & Wohland, T. (2006). Simultaneous multicolor fluorescence cross-correlation spectroscopy to detect higher order molecular interactions using single wavelength laser excitation. Biophysical Journal, 91, 715–727.

    PubMed  CAS  Google Scholar 

  46. Kogure, T., Karasawa, S., Araki, T., Saito, K., Kinjo, M., & Miyawaki, A. (2006). A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nature Biotechnology, 24, 577–581.

    PubMed  CAS  Google Scholar 

  47. Schwille, P., Haupts, U., Maiti, S., & Webb, W. W. (1999). Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophysical Journal, 77, 2251–2265.

    PubMed  CAS  Google Scholar 

  48. Berland, K. M., So, P. T. C., & Gratton, E. (1995). Two-photon fluorescence correlation spectroscopy: Method and application to the intracellular environment. Biophysical Journal, 68, 694–701.

    PubMed  CAS  Google Scholar 

  49. Kim, S. A., Heinze, K. G., Bacia, K., Waxham, M. N., & Schwille, P. (2005). Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry. Biophysical Journal, 88, 4319–4336.

    PubMed  CAS  Google Scholar 

  50. Kim, S. A., Heinze, K. G., Waxham, M. N., & Schwille, P. (2004). Intracellular calmodulin availability accessed with two-photon cross-correlation. Proceedings of the National Academy of Sciences of the USA, 101, 105–110.

    PubMed  CAS  Google Scholar 

  51. Larson, D. R., Gosse, J. A., Holowka, D. A., Baird, B. A., & Webb, W. W. (2005). Temporally resolved interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells. Journal of Cell Biology, 171, 527–536.

    PubMed  CAS  Google Scholar 

  52. Heinze, K. G., Jahnz, M., & Schwille, P. (2004). Triple-color coincidence analysis: one step further in following higher order molecular complex formation. Biophysical Journal, 86, 506–516.

    PubMed  CAS  Google Scholar 

  53. Thews, E., Gerken, M., Eckert, R., Zapfel, J., Tietz, C., & Wrachtrup, J. (2005). Cross talk free fluorescence cross correlation spectroscopy in live cells. Biophysical Journal, 89, 2069–2076.

    PubMed  CAS  Google Scholar 

  54. Muller, B. K., Zaychikov, E., Brauchle, C., & Lamb, D. C. (2005). Pulsed interleaved excitation. Biophysical Journal, 89, 3508–3522.

    PubMed  Google Scholar 

  55. Brinkmeier, M., Dorre, K., Stephan, J., & Eigen, M. (1999). Two-beam cross correlation: A method to characterize transport phenomena in micrometer-sized structures. Analytical Chemistry, 71, 609–616.

    CAS  Google Scholar 

  56. Dittrich, P. S., & Schwille, P. (2002). Spatial two-photon fluorescence cross-correlation spectroscopy for controlling molecular transport in microfluidic structures. Analytical Chemistry, 74, 4472–4479.

    PubMed  CAS  Google Scholar 

  57. LeCaptain, D. J., & Van Orden, A. (2002). Two-beam fluorescence cross-correlation spectroscopy in an electrophoretic mobility shift assay. Analytical Chemistry, 74, 1171–1176.

    PubMed  CAS  Google Scholar 

  58. Fogarty, K., & Van Orden, A. (2003). Two-beam fluorescence cross-correlation spectroscopy for simultaneous analysis of positive and negative ions in continuous-flow capillary electrophoresis. Analytical Chemistry, 75, 6634–6641.

    PubMed  CAS  Google Scholar 

  59. Jung, J., & Van Orden, A. (2006). A three-state mechanism for DNA hairpin folding characterized by multiparameter fluorescence fluctuation spectroscopy. Journal of American Chemical Society, 128, 1240–1249.

    CAS  Google Scholar 

  60. Jung, J., & Orden, A. V. (2005). Folding and unfolding kinetics of DNA hairpins in flowing solution by multiparameter fluorescence correlation spectroscopy. Journal of Physical Chemistry B, 109, 3648–3657.

    CAS  Google Scholar 

  61. Blom, H., Johansson, M., Hedman, A. S., Lundberg, L., Hanning, A., Hard, S., & Rigler, R. (2002). Parallel fluorescence detection of single biomolecules in microarrays by a diffractive-optical-designed 2 × 2 fan-out element. Applied Optics, 41, 3336–3342.

    PubMed  CAS  Google Scholar 

  62. Gösch, M., Blom, H., Anderegg, S., Korn, K., Thyberg, P., Wells, M., Lasser, T., Rigler, R., Magnusson, A., & Hard, S. (2005). Parallel dual-color fluorescence cross-correlation spectroscopy using diffractive optical elements. Journal of Biomedical Optics, 10, 054008.

    PubMed  Google Scholar 

  63. Blom, H., Johansson, M., Gösch, M., Sigmundsson, T., Holm, J., Hard, S., & Rigler, R. (2002). Parallel flow measurements in microstructures by use of a multifocal 4 × 1 diffractive optical fan-out element. Applied Optics, 41, 6614–6620.

    PubMed  Google Scholar 

  64. Ries, J., & Schwille, P. (2006). Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophysical Journal, 91, 1915–1924.

    PubMed  CAS  Google Scholar 

  65. Jaffiol, R., Blancquaert, Y., Delon, A., & Derouard, J. (2006). Spatial fluorescence cross-correlation spectroscopy. Applied Optics, 45, 1225–1235.

    PubMed  Google Scholar 

  66. Thompson, N. L., Burghardt, T. P., & Axelrod, D. (1981). Measuring surface dynamics of biomolecules by total internal-reflection fluorescence with photobleaching recovery or correlation spectroscopy. Biophysical Journal, 33, 435–454.

    PubMed  CAS  Google Scholar 

  67. Hassler, K., Anhut, T., Rigler, R., Gösch, M., & Lasser, T. (2005). High count rates with total internal reflection fluorescence correlation spectroscopy. Biophysical Journal, 88, L01–L03.

    PubMed  Google Scholar 

  68. Hassler, K., Leutenegger, M., Rigler, P., Rao, R., Rigler, R., Gösch, M., & Lasser, T. (2005). Total internal reflection fluorescence correlation spectroscopy TIR-FCS with low background and high count-rate per molecule. Optics Express, 13, 7415–7423.

    CAS  PubMed  Google Scholar 

  69. Starr, T. E., & Thompson, N. L. (2002). Local diffusion and concentration of IgG near planar membranes: Measurement by total internal reflection with fluorescence correlation spectroscopy. Journal of Physical Chemistry B, 106, 2365–2371.

    CAS  Google Scholar 

  70. Lieto, A. M., Cush, R. C., & Thompson, N. L. (2003). Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophysical Journal, 85, 3294–3302.

    PubMed  CAS  Google Scholar 

  71. Ohsugi, Y., Saito, K., Tamura, M., & Kinjo, M. (2006). Lateral mobility of membrane-binding proteins in living cells measured by total internal reflection fluorescence correlation spectroscopy. Biophysical Journal, 91, 3456–3464.

    PubMed  CAS  Google Scholar 

  72. Leutenegger, M., Blom, H., Widengren, J., Eggeling, C., Gösch, M., Leitgeb, R. A., & Lasser, T. (2006). Dual-color total internal reflection fluorescence cross-correlation spectroscopy. Journal of Biomedical Optics, 11, 040502.

    PubMed  Google Scholar 

  73. Lacoste, T. D., Michalet, X., Pinaud, F., Chemla, D. S., Alivastos, A. P., & Weiss, S. (2000). Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proceedings of the National Academy of Sciences of the USA, 97, 9461–9466.

    PubMed  CAS  Google Scholar 

  74. Dickinson, M. E., Bearman, G., Tille, S., Lansford, R., & Fraser, S. E. (2001). Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques, 31, 1272, 1274–1276, 1278.

    Google Scholar 

  75. Hiraoka, Y., Shimi, T., & Haraguchi, T. (2002). Multispectral imaging fluorescence microscopy for living cells. Cell Structure and Function, 27, 367–374.

    PubMed  Google Scholar 

  76. Zimmermann, T., Rietdorf, J., Girod, A., Georget, V., & Pepperkok, R. (2002). Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Letters, 531, 245–249.

    PubMed  CAS  Google Scholar 

  77. Zimmermann, T., Rietdorf, J., & Pepperkok, R. (2003). Spectral imaging and its applications in live cell microscopy. FEBS Letter, 546, 87–92.

    CAS  Google Scholar 

  78. Burkhardt, M., Heinze, K. G., & Schwille, P. (2005). Four-color fluorescence correlation spectroscopy realized in a grating-based detection platform. Optics Letters, 30, 2266–2268.

    PubMed  Google Scholar 

  79. Hwang, L. C., Leutenegger, M., Gösch, M., Lasser, T., Rigler, P., Meier, W., & Wohland, T. (2006). Prism-based multicolor fluorescence correlation spectrometer. Optics Letter, 31, 1310–1312.

    Google Scholar 

  80. Gösch, M., Serov, A., Anhut, T., Lasser, T., Rochas, A., Besse, P. A., Popovic, R. S., Blom, H., & Rigler, R. (2004). Parallel single molecule detection with a fully integrated single-photon 2x2 CMOS detector array. Journal of Biomedical Optics, 9, 913–921.

    PubMed  Google Scholar 

  81. Kannan, B., Har, J. Y., Liu, P., Maruyama, I., Ding, J. L., & Wohland, T. (2006). Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy. Analytical Chemistry, 78, 3444–3451.

    PubMed  CAS  Google Scholar 

  82. Burkhardt, M., & Schwille, P. (2006). Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy. Optics Express, 14, 5013–5020.

    PubMed  Google Scholar 

  83. Sisan, D. R., Arevalo, R., Graves, C., McAllister, R., & Urbach, J. S. (2006). Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope. Biophysical Journal, 91, 4241–4252.

    PubMed  CAS  Google Scholar 

  84. Petersen, N. O., Hoddelius, P. L., Wiseman, P. W., Seger, O., & Magnusson, K. E. (1993). Quantitation of membrane receptor distributions by image correlation spectroscopy: Concept and application. Biophysical Journal, 65, 1135–1146.

    PubMed  CAS  Google Scholar 

  85. Wiseman, P. W., Brown, C. M., Webb, D. J., Hebert, B., Johnson, N. L., Squier, J. A., Ellisman, M. H., & Horwitz, A. F. (2004). Spatial mapping of integrin interactions and dynamics during cell migration by image correlation microscopy. Journal of Cell Science, 117, 5521–5534.

    PubMed  CAS  Google Scholar 

  86. Wiseman, P. W., Squier, J. A., Ellisman, M. H., & Wilson, K. R. (2000). Two-photon image correlation spectroscopy and image cross-correlation spectroscopy. Journal of Microscopy, 200, 14–25.

    PubMed  CAS  Google Scholar 

  87. Kolin, D. L., Ronis, D., & Wiseman, P. W. (2006). K-space image correlation spectroscopy: A method for accurate transport measurements independent of fluorophore photophysics. Biophysical Journal, 91, 3061–3075.

    PubMed  CAS  Google Scholar 

  88. Digman, M. A., Brown, C. M., Sengupta, P., Wiseman, P. W., Horwitz, A. R., & Gratton, E. (2005). Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophysical Journal, 89, 1317–1327.

    PubMed  CAS  Google Scholar 

  89. Hebert, B., Costantino, S., & Wiseman, P. W. (2005). Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophysical Journal, 88, 3601–3614.

    PubMed  CAS  Google Scholar 

  90. Dyomics GmbH.www.dyomics.com.

  91. Bruchez, M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013–2016.

    PubMed  CAS  Google Scholar 

  92. Alivisatos, A. P. (1996). Semiconductor clustors, nanocrystals and quantum dots. Science, 271, 933–937.

    CAS  Google Scholar 

  93. Korlach, J., Baumgart, T., Webb, W. W., & Feigenson, G. W. (2005). Detection of motional heterogeneities in lipid bilayer membranes by dual probe fluorescence correlation spectroscopy. Biochimica Et Biophysica Acta, 1668, 158–163.

    PubMed  CAS  Google Scholar 

  94. Stavis, S. M., Edel, J. B., Samiee, K. T., & Craighead, H. G. (2005). Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel. Lab on a Chip, 5, 337–343.

    PubMed  CAS  Google Scholar 

  95. Swift, J. L., Heuff, R., & Cramb, D. T. (2006). A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots. Biophysical Journal, 90, 1396–1410.

    PubMed  CAS  Google Scholar 

  96. Alivisatos, A. P., Gu, W., & Larabell, C. (2005). Quantum dots as cellular probes. Annual Review of Biomedical Engineering, 7, 55–76.

    PubMed  CAS  Google Scholar 

  97. Fu, A., Gu, W., Boussert, B., Koski, K., Gerion, D., Manna, L., Gros, M. L., Larabell, C. A., & Alivisatos, A. P. (2007). Semiconductor quantum rods as single molecule fluorescent biological labels. Nano Letters, 7, 179–182.

    PubMed  CAS  Google Scholar 

  98. Kronick, M. N. (1986). The use of phycobiliproteins as fluorescent labels in immunoassay. Journal of Immunological Methods, 92, 1–13.

    PubMed  CAS  Google Scholar 

  99. Glazer, A. N., & Stryer, L. (1983). Fluorescent tandem phycobiliprotein conjugates. Emission wavelength shifting by energy transfer. Biophysical Journal, 43, 383–386.

    PubMed  CAS  Google Scholar 

  100. Tjioe, I., Legerton, T., Wegstein, J., Herzenberg, L. A., & Roederer, M. (2001). Phycoerythrin-allophycocyanin: a resonance energy transfer fluorochrome for immunofluorescence. Cytometry, 44, 24–29.

    PubMed  CAS  Google Scholar 

  101. Waggoner, A. S., Ernst, L. A., Chen, C. H., & Rechtenwald, D. J. (1993). PE-CY5. A new fluorescent antibody label for three-color flow cytometry with a single laser. Annals of the New York Academy of Sciences, 677, 185–193.

    PubMed  CAS  Google Scholar 

  102. Berlier, J. E., Rothe, A., Buller, G., Bradford, J., Gray, D. R., Filanoski, B. J., Telford, W. G., Yue, S., Liu, J., Cheung, C.-Y., Chang, W., Hirsch, J. D., Beechem, J. M., Haugland, R. P., & Haugland, R. P. (2003). Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: Fluorescence of the dyes and their bioconjugates. Journal of Histochemistry and Cytochemistry, 51, 1699–1712.

    PubMed  CAS  Google Scholar 

  103. Viksman, M. Y., Liu, M. C., Schleimer, R. P., & Bochner, B. S. (1994). Application of a flow cytometric method using autofluorescence and a tandem fluorescent dye to analyze human alveolar macrophage surface markers. Journal of Immunological Methods, 172, 17–24.

    PubMed  CAS  Google Scholar 

  104. Saito, K., Wada, I., Tamura, M., & Kinjo, M. (2004). Direct detection of caspase-3 activation in single live cells by cross-correlation analysis. Biochemical and Biophysical Research Communications, 324, 849–854.

    PubMed  CAS  Google Scholar 

  105. Kohl, T., Haustein, E., & Schwille, P. (2005). Determining protease activity in vivo by fluorescence cross-correlation analysis. Biophysical Journal, 89, 2770–2782.

    PubMed  CAS  Google Scholar 

  106. Baudendistel, N., Muller, G., Waldeck, W., Angel, P., & Langowski, J. (2005). Two-hybrid fluorescence cross-correlation spectroscopy detects protein-protein interactions in vivo. Chemphyschem, 6, 984–990.

    PubMed  CAS  Google Scholar 

  107. Muto, H., Nagao, I., Demura, T., Fukuda, H., Kinjo, M., & Yamamoto, K. T. (2006). Fluorescence cross-correlation analyses of the molecular interaction between an Aux/IAA protein, MSG2/IAA19, and protein–protein interaction domains of auxin response factors of arabidopsis expressed in HeLa cells. Plant & Cell Physiology, 47, 1095–1101.

    CAS  Google Scholar 

  108. Liu, P., Sudhaharan, T., Koh, R. M., Hwang, L. C., Ahmed, S., Maruyama, I. N., & Wohland, T. (2007). Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength fluorescence cross-correlation spectroscopy. Biophysical Journal, 93, 684–698.

    PubMed  CAS  Google Scholar 

  109. Chen, Y., Wei, L.-N., & Muller, J. D. (2005). Unraveling protein-protein interactions in living cells with fluorescence fluctuation brightness analysis. Biophysical Journal, 88, 4366–4377.

    PubMed  CAS  Google Scholar 

  110. Chen, Y., Tekmen, M., Hillesheim, L., Skinner, J., Wu, B., & Muller, J. D. (2005). Dual-color photon-counting histogram. Biophysical Journal, 88, 2177–2192.

    PubMed  CAS  Google Scholar 

  111. Chen, Y., Wei, L. N., & Müller, J. D. (2003). Probing protein oligomerization in living cells with fluorescence fluctuation spectroscopy. Proceedings of the National Academy of Sciences of the USA, 100, 15492–15497.

    PubMed  CAS  Google Scholar 

  112. Kask, P., Palo, K., Fay, N., Brand, L., Mets, U., Ullmann, D., Jungmann, J., Pschorr, J., & Gall, K. (2000). Two-dimensional fluorescence intensity distribution analysis: Theory and applications. Biophysical Journal, 78, 1703–1713.

    Article  PubMed  CAS  Google Scholar 

  113. Eggeling, C., Kask, P., Winkler, D., & Jager, S. (2005). Rapid analysis of Forster resonance energy transfer by two-color global fluorescence correlation spectroscopy: Trypsin proteinase reaction. Biophysical Journal, 89, 605–618.

    PubMed  CAS  Google Scholar 

  114. Blom, H., Kastrup, L., & Eggeling, C. (2006). Fluorescence fluctuation spectroscopy in reduced detection volumes. Current Pharmaceutical Biotechnology, 7, 51–66.

    PubMed  CAS  Google Scholar 

  115. Orden, A. V., Fogarty, K., & Jung, J. (2004). Fluorescence fluctuation spectroscopy: A coming of age story. Applied Spectroscopy, 58, 122A–137A.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ping Liu for helpful discussions. This work was supported by the Academic Research Fund of the National University of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Chin Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, L.C., Wohland, T. Recent Advances in Fluorescence Cross-correlation Spectroscopy. Cell Biochem Biophys 49, 1–13 (2007). https://doi.org/10.1007/s12013-007-0042-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-0042-5

Keywords

Navigation