Skip to main content

Advertisement

Log in

HIF-1α is a “brake” in JNK-mediated activation of amyloid protein precursor and hyperphosphorylation of tau induced by T-2 toxin in BV2 cells

  • Original Article
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

Mycotoxins have been shown to activate multiple mechanisms that may potentially lead to the progression of Alzheimer’s disease (AD). Overexpression/aberrant cleavage of amyloid precursor protein (APP) and hyperphosphorylation of tau (P-tau) is hallmark pathologies of AD. Recent advances suggest that the neurotoxic effects of mycotoxins involve c-Jun N-terminal kinase (JNK) and hypoxia-inducible factor-1α (HIF-1α) signaling, which are closely linked to the pathogenesis of AD. Due to the high toxicity and broad contamination of T-2 toxin, we assessed how T-2 toxin exposure alters APP and P-tau formation in BV2 cells and determined the underlying roles of HIF-1α and JNK signaling. The findings revealed that T-2 toxin stimulated the expression of HIF-1α and hypoxic stress factors in addition to increasing the expression of APP and P-tau. Additionally, HIF-1α acted as a “brake” on the induction of APP and P-tau expression by negatively regulating these proteins. Notably, T-2 toxin activated JNK signaling, which broke this “brake” to promote the formation of APP and P-tau. Furthermore, the cytoskeleton was an essential target for T-2 toxin to exert cytotoxicity, and JNK/HIF-1α participated in this damage. Collectively, when the T-2 toxin induces the production of APP and P-tau, JNK might interfere with HIF-1α’s protective function. This study will provide clues for further research on the neurotoxicity of mycotoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  • Adedara IA, Atanda OE, Sant’Anna Monteiro C, Rosemberg DB, Aschner M, Farombi EO, Rocha JBT, Furian AF, Emanuelli T (2023) Cellular and molecular mechanisms of aflatoxin B(1)-mediated neurotoxicity: the therapeutic role of natural bioactive compounds. Environ Res 237:116869

    Article  CAS  PubMed  Google Scholar 

  • Bode DC, Baker MD, Viles JH (2017) Ion channel formation by amyloid-β42 oligomers but not amyloid-β40 in cellular membranes. J Biol Chem 292:1404–1413

    Article  CAS  PubMed  Google Scholar 

  • Bredesen DE (2016) Inhalational Alzheimer’s disease: an unrecognized-and treatable-epidemic. Aging-Us 8:304–313

    Article  CAS  Google Scholar 

  • Chen G, Han M, Chen Y, Lei Y, Li M, Wang L, Wang C, Hu Y, Niu J, Yang C, Mo Y, Wang Q, Yang L, Chang X (2023) Danggui-Shaoyao-San promotes amyloid-beta clearance through regulating microglia polarization via Trem2 in BV2 cells. J Integr Neurosci 22:72

    Article  PubMed  Google Scholar 

  • Cho K, Jang YJ, Lee SJ, Jeon YN, Shim YL, Lee JY, Lim DS, Kim DH, Yoon SY (2020) TLQP-21 mediated activation of microglial BV2 cells promotes clearance of extracellular fibril amyloid-beta. Biochem Biophys Res Commun 524:764–771

    Article  CAS  PubMed  Google Scholar 

  • Colombo A, Bastone A, Ploia C, Sclip A, Salmona M, Forloni G, Borsello T (2009) JNK regulates APP cleavage and degradation in a model of Alzheimer’s disease. Neurobiol Dis 33:518–525

    Article  CAS  PubMed  Google Scholar 

  • Dai C, Xiao X, Sun F, Zhang Y, Hoyer D, Shen J, Tang S, Velkov T (2019) T-2 toxin neurotoxicity: role of oxidative stress and mitochondrial dysfunction. Arch Toxicol 93:3041–3056

    Article  CAS  PubMed  Google Scholar 

  • Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  CAS  PubMed  Google Scholar 

  • de Lemos M, Luisa AV, de la Torre D, Petrov SB, Folch J, Pallàs M, Lazarowski A, Beas-Zarate C, Auladell C, Camins A (2013) Evaluation of hypoxia inducible factor expression in inflammatory and neurodegenerative brain models. Int J Biochem 45:1377–1388

    Article  Google Scholar 

  • Dupuy F, Tabaries S, Andrzejewski S, Dong Z, Blagih J, Annis MG, Omeroglu A, Gao D, Leung S, Amir E, Clemons M, Aguilar-Mahecha A, Basik M, Vincent EE, St-Pierre J, Jones RG, Siegel PM (2015) PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab 22:577–589

    Article  CAS  PubMed  Google Scholar 

  • Eiser AR (2017) ’Why does Finland have the highest dementia mortality rate? Environmental Factors May Be Generalizable’, Brain Res 1671:14–17

    CAS  PubMed  Google Scholar 

  • Escamilla-Ayala A, Wouters R, Sannerud R, Annaert W (2020) Contribution of the Presenilins in the cell biology, structure and function of γ-secretase. Semin Cell Dev Biol 105:12–26

    Article  CAS  PubMed  Google Scholar 

  • Esselens C, Sannerud R, Gallardo R, Baert V, Kaden D, Serneels L, De Strooper B, Rousseau F, Multhaup G, Schymkowitz J, Langedijk JPM, Annaert W (2012) Peptides based on the presenilin-APP binding domain inhibit APP processing and Aβ production through interfering with the APP transmembrane domain. FASEB J 26:3765–3778

    Article  CAS  PubMed  Google Scholar 

  • Habrowska-Gorczynska DE, Kowalska K, Urbanek KA, Dominska K, Sakowicz A, Piastowska-Ciesielska AW (2019) Deoxynivalenol modulates the viability, ROS production and apoptosis in prostate cancer cells. Toxins (basel) 11:265

    Article  CAS  PubMed  Google Scholar 

  • Iyalomhe O, Swierczek S, Enwerem N, Chen Y, Adedeji MO, Allard J, Ntekim O, Johnson S, Hughes K, Kurian P, Obisesan TO (2017) The role of hypoxia-inducible factor 1 in mild cognitive impairment. Cell Mol Neurobiol 37:969–977

    Article  CAS  PubMed  Google Scholar 

  • Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, Copeland NG, Lee MK, Younkin LH, Wagner SL, Younkin SG, Borchelt DR (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13:159–170

    Article  CAS  PubMed  Google Scholar 

  • Karkisaval AG, Rostagno A, Azimov R, Ban DK, Ghiso J, Kagan BL, Lal R (2020) Ion channel formation by N-terminally truncated Aβ (4–42): relevance for the pathogenesis of Alzheimer’s disease. Nanomedicine 29:102235

    Article  CAS  PubMed  Google Scholar 

  • Kowalska K, Habrowska-Gorczynska DE, Urbanek KA, Dominska K, Sakowicz A, Piastowska-Ciesielska AW (2019) Estrogen receptor beta plays a protective role in zearalenone-induced oxidative stress in normal prostate epithelial cells. Ecotoxicol Environ Saf 172:504–513

    Article  CAS  PubMed  Google Scholar 

  • Kreis A, Desloovere J, Suelves N, Pierrot N, Yerna X, Issa F, Schakman O, Gualdani R, de Clippele M, Tajeddine N, Kienlen-Campard P, Raedt R, Octave JN, Gailly P (2021) Overexpression of wild-type human amyloid precursor protein alters GABAergic transmission. Sci Rep 11:17600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YN, Xi MM, Guo Y, Hai CX, Yang WL, Qin XJ (2014) NADPH oxidase-mitochondria axis-derived ROS mediate arsenite-induced HIF-1alpha stabilization by inhibiting prolyl hydroxylases activity. Toxicol Lett 224:165–174

    Article  CAS  PubMed  Google Scholar 

  • Liu XL, Liu Y, Ji SR (2021) Secretases related to amyloid precursor protein processing. Membranes 11(12):983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Hernandez B, Posadas I, Podlesniy P, Abad MA, Trullas R, Cena V (2012) HIF-1alpha is neuroprotective during the early phases of mild hypoxia in rat cortical neurons. Exp Neurol 233:543–554

    Article  CAS  PubMed  Google Scholar 

  • Mamun AA, Uddin MS, Mathew B, Ashraf GM (2020) Toxic tau: structural origins of tau aggregation in Alzheimer’s disease. Neural Regen Res 15:1417–1420

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez MA, Ares I, Martinez M, Lopez-Torres B, Maximiliano JE, Rodriguez JL, Martinez-Larranaga MR, Anadon A, Peteiro C, Rubino S, Hortos M (2021) Brown marine algae Gongolaria baccata extract protects Caco-2 cells from oxidative stress induced by tert-butyl hydroperoxide. Food Chem Toxicol 156:112460

    Article  CAS  PubMed  Google Scholar 

  • Merelli A, Rodriguez JCG, Folch J, Regueiro MR, Camins A, Lazarowski A (2018) Understanding the role of hypoxia inducible factor during neurodegeneration for new therapeutics opportunities. Curr Neuropharmacol 16:1484–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen VTT, Konig S, Eggert S, Endres K, Kins S (2022) The role of mycotoxins in neurodegenerative diseases: current state of the art and future perspectives of research. Biol Chem 403:3–26

    Article  CAS  PubMed  Google Scholar 

  • Niaz K, Shah SZA, Khan F, Bule M (2020) Ochratoxin A-induced genotoxic and epigenetic mechanisms lead to Alzheimer disease: its modulation with strategies. Environ Sci Pollut Res 27:44673–44700

    Article  CAS  Google Scholar 

  • Obafemi BA, Adedara IA, Rocha JBT (2023) Neurotoxicity of ochratoxin A: molecular mechanisms and neurotherapeutic strategies. Toxicology 497–498:153630

    Article  PubMed  Google Scholar 

  • Pei X, Hu F, Hu Z, Luo F, Li X, Xing S, Sun L, Long D (2023) Neuroprotective effect of α-lipoic acid against Aβ(25–35)-induced damage in BV2 cells. Molecules 28:1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisa D, Alonso R, Rabano A, Rodal I, Carrasco L (2015) Different brain regions are infected with fungi in Alzheimer’s disease. Sci Rep 5:15015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popescu RG, Marinescu GC, Radulescu AL, Marin DE, Taranu I, Dinischiotu A (2023) Natural antioxidant by-product mixture counteracts the effects of aflatoxin B1 and ochratoxin A exposure of piglets after weaning: a proteomic survey on liver microsomal fraction. Toxins 15:299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyo MC, Choi IG, Lee KW (2021) Transcriptome analysis reveals the AhR, Smad2/3, and HIF-1alpha pathways as the mechanism of ochratoxin A toxicity in kidney cells. Toxins (basel) 13:190

    Article  CAS  PubMed  Google Scholar 

  • Raghubeer S, Nagiah S, Chuturgoon A (2019) Ochratoxin A upregulates biomarkers associated with hypoxia and transformation in human kidney cells. Toxicol in Vitro 57:211–216

    Article  CAS  PubMed  Google Scholar 

  • Ravindran J, Agrawal M, Gupta N, Rao PV (2011) Alteration of blood brain barrier permeability by T-2 toxin: role of MMP-9 and inflammatory cytokines. Toxicology 280:44–52

    Article  CAS  PubMed  Google Scholar 

  • Sankar KS, Altamentova SM, Rocheleau JV (2019) Hypoxia induction in cultured pancreatic islets enhances endothelial cell morphology and survival while maintaining beta-cell function. PLoS ONE 14:e0222424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos-Ledo A, Washer S, Dhanaseelan T, Eley L, Alqatani A, Chrystal PW, Papoutsi T, Henderson DJ, Chaudhry B (2020) Alternative splicing of in zebrafish determines first heart field ventricular cardiomyocyte numbers through modulation of hand2 expression. PLoS Genet 16:e1008782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert D, Soucek T, Blouw B (2009) The induction of HIF-1 reduces astrocyte activation by amyloid beta peptide. Eur J Neurosci 29:1323–1334

    Article  PubMed  PubMed Central  Google Scholar 

  • Semenza GL (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 1813:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Sheik Abdul N, Nagiah S, Chuturgoon AA (2020) The neglected foodborne mycotoxin fusaric acid induces bioenergetic adaptations by switching energy metabolism from mitochondrial processes to glycolysis in a human liver (HepG2) cell line. Toxicol Lett 318:74–85

    Article  CAS  PubMed  Google Scholar 

  • Shohet RV, Garcia JA (2007) Keeping the engine primed: HIF factors as key regulators of cardiac metabolism and angiogenesis during ischemia. J Mol Med (berl) 85:1309–1315

    Article  PubMed  Google Scholar 

  • Sun X, He G, Qing H, Zhou W, Dobie F, Cai F, Staufenbiel M, Huang LE, Song W (2006) Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci U S A 103:18727–18732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao L, Hu M, Zhang X, Wang X, Zhang Y, Chen X, Tang J, Wang J (2022) Methamphetamine-mediated dissemination of beta-amyloid: disturbances in endocytosis, transport and clearance of beta-amyloid in microglial BV2 cells. Toxicol Appl Pharmacol 447:116090

    Article  CAS  PubMed  Google Scholar 

  • Tkaczyk A, Jedziniak P (2021) Mycotoxin biomarkers in pigs-current state of knowledge and analytics. Toxins (basel) 13:586

    Article  CAS  PubMed  Google Scholar 

  • Wang YY, Huang ZT, Yuan MH, Jing F, Cai RL, Zou Q, Pu YS, Wang SY, Chen F, Yi WM, Zhang HJ, Cai ZY (2021) Role of hypoxia inducible factor-1alpha in Alzheimer’s disease. J Alzheimers Dis 80:949–961

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Wang X, Wan D, Li J, Yuan Z (2014) Crosstalk of JNK1-STAT3 is critical for RAW264.7 cell survival. Cell Signal 26:2951–2960

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Qin Z, Kuca K, You L, Zhao Y, Liu A, Musilek K, Chrienova Z, Nepovimova E, Oleksak P, Wu W, Wang X (2020) An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment. Arch Toxicol 94:3645–3669

    Article  CAS  PubMed  Google Scholar 

  • Xiao XW, Liu H, Liu XX, Zhang WW, Zhang SZ, Jiao B (2021) APP, PSEN1, and PSEN2 variants in Alzheimer’s disease: systematic re-evaluation according to ACMG guidelines. Front Aging Neurosci 13:695808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang DD, Ye YL, Huang YG, Huang HY, Sun JD, Wang JS, Tang LL, Gao YH, Sun XL (2023) Effects of FB1 and HFB1 on autonomous exploratory and spatial memory and learning abilities in mice. J Agric Food Chem 71:16752–16762

    Article  CAS  PubMed  Google Scholar 

  • Yoon SO, Park DJ, Ryu JC, Ozer HG, Tep C, Shin YJ, Lim TH, Pastorino L, Kunwar AJ, Walton JC, Nagahara AH, Lu KP, Nelson RJ, Tuszynski MH, Huang K (2012) JNK3 perpetuates metabolic stress induced by Abeta peptides. Neuron 75:824–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida H, Hastie CJ, McLauchlan H, Cohen P, Goedert M (2004) Phosphorylation of microtubule-associated protein tau by isoforms of c-Jun N-terminal kinase (JNK). J Neurochem 90:352–358

    Article  CAS  PubMed  Google Scholar 

  • You L, Wang X, Wu W, Nepovimova E, Wu Q, Kuca K (2022) HIF-1alpha inhibits T-2 toxin-mediated “immune evasion” process by negatively regulating PD-1/PD-L1. Toxicology 480:153324

    Article  CAS  PubMed  Google Scholar 

  • Yu KH, Hung HY (2021) Synthetic strategy and structure-activity relationship (SAR) studies of 3-(5’-hydroxymethyl-2’-furyl)-1-benzyl indazole (YC-1, Lificiguat): a review. RSC Adv 12:251–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Zain ME (2011) Impact of mycotoxins on humans and animals. J Saudi Chem Soc 15:129–144

    Article  CAS  Google Scholar 

  • Zhang X, Zhou K, Wang R, Cui J, Lipton SA, Liao FF, Xu H, Zhang YW (2007) Hypoxia-inducible factor 1alpha (HIF-1alpha)-mediated hypoxia increases BACE1 expression and beta-amyloid generation. J Biol Chem 282:10873–10880

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Yan J, Chang Y, ShiDu Yan S, Shi H (2011) Hypoxia inducible factor-1 as a target for neurodegenerative diseases. Curr Med Chem 18:4335–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang CC, Xing A, Tan MS, Tan L, Yu JT (2016) The role of MAPT in neurodegenerative diseases: genetics, mechanisms and therapy. Mol Neurobiol 53:4893–4904

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhan J, Zhao M, Dai H, Deng Y, Zhou W, Zhao L (2019) Protective mechanism of taxifolin for chlorpyrifos neurotoxicity in BV2 cells. Neurotoxicology 74:74–80

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Pan Q, Cheng Y, Liu Y (2021) Effects of SP600125 and hypothermic machine perfusion on livers donated after cardiac death in a pig allograft transplantation model. Eur J Med Res 26:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Kuca K, Wu W, Wang X, Nepovimova E, Musilek K, Wu Q (2022) Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases. Alzheimers Dement 18:152–158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the National Natural Science Foundation of China.

Funding

This work was supported by the National Natural Science Foundation of China (Grant nos. 31972741, 32373073, 32072925), MH CZ-DRO (UHHK, 00179906), Research Program of University of Granada, by the Charles University in Prague, Czechia (PROGRES Q40/15), and the Excellence Project PrF UHK 2217/2022-2023 Czech Republic.

Author information

Authors and Affiliations

Authors

Contributions

Yingying Zhao performed the experiment and drafted the manuscript. Martin Valis reviewed and analyzed the data. Xu Wang and Eugenie Nepovimova contributed to the discussion and review of the manuscript. Qinghua Wu and Kamil Kuca designed the research and analyzed the data. All co-authors reviewed and edited the manuscript and approved the submission.

Corresponding authors

Correspondence to Qinghua Wu or Kamil Kuca.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Valis, M., Wang, X. et al. HIF-1α is a “brake” in JNK-mediated activation of amyloid protein precursor and hyperphosphorylation of tau induced by T-2 toxin in BV2 cells. Mycotoxin Res 40, 223–234 (2024). https://doi.org/10.1007/s12550-024-00525-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-024-00525-6

Keywords

Navigation