Skip to main content
Log in

Porous Polymer Microneedles with Superhydrophilic Surface for Rapid Fluid Transport

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Microneedles are extensively used in the field of drug deliveries and disease treatment. Cellulose porous microneedles were fabricated using the cellulose acetate phase separation method followed by a deacetylation process. The developed cellulose microneedles were tested for porosity, mechanical strength, penetration, and surface hydrophobicity. The porosity of cellulose microneedles increased by approximately 15%, while the Young’s modulus, indicative of mechanical strength, increased by approximately 30% compared with cellulose acetate microneedles before the deacetylation process. The cellulose microneedles easily penetrated the sample skin, making it a potential tool for transdermal drug delivery. The developed cellulose microneedles exhibited enhanced hydrophilicity in comparison to cellulose acetate microneedles. The increased hydrophilicity of the developed microneedles positions them as promising tools for efficient interstitial fluid extraction. These characteristics not only make them suitable for drug delivery but also highlights their potential as biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim, Y.-C., Park, J.-H., & Prausnitz, M. R. (2012). Microneedles for drug and vaccine delivery. Advanced Drug Delivery Reviews, 64, 1547–1568. https://doi.org/10.1016/j.addr.2012.04.005

    Article  Google Scholar 

  2. Nagarkar, R., Singh, M., Nguyen, H. X., & Jonnalagadda, S. (2020). A review of recent advances in microneedle technology for transdermal drug delivery. Journal of Drug Delivery Science and Technology, 59, 101923. https://doi.org/10.1016/j.jddst.2020.101923

    Article  Google Scholar 

  3. Tariq, N., Ashraf, M. W., & Tayyaba, S. (2022). A review on solid microneedles for biomedical applications. Journal of Pharmaceutical Innovation, 17, 1464–1483. https://doi.org/10.1007/s12247-021-09586-x

    Article  Google Scholar 

  4. Aldawood, F. K., Andar, A., & Desai, S. (2021). A comprehensive review of microneedles: Types, materials, processes. Characterizations and Applications. Polymers, 13, 2815. https://doi.org/10.3390/polym13162815

    Article  Google Scholar 

  5. Faraji Rad, Z., Prewett, P. D., & Davies, G. J. (2021). An overview of microneedle applications, materials, and fabrication methods. Beilstein Journal of Nanotechnology, 12, 1034–1046. https://doi.org/10.3762/bjnano.12.77

    Article  Google Scholar 

  6. Yang, J., Liu, X., Fu, Y., & Song, Y. (2019). Recent advances of microneedles for biomedical applications: Drug delivery and beyond. Acta Pharmaceutica Sinica B, 9, 469–483. https://doi.org/10.1016/j.apsb.2019.03.007

    Article  Google Scholar 

  7. Halder, J., Gupta, S., Kumari, R., Gupta, G. D., & Rai, V. K. (2021). Microneedle array: Applications, recent advances, and clinical pertinence in transdermal drug delivery. Journal of Pharmaceutical Innovation, 16, 558–565. https://doi.org/10.1007/s12247-020-09460-2

    Article  Google Scholar 

  8. Bao, L., Park, J., Bonfante, G., & Kim, B. (2022). Recent advances in porous microneedles: Materials, fabrication, and transdermal applications. Drug Delivery and Translational Research, 12, 395–414. https://doi.org/10.1007/s13346-021-01045-x

    Article  Google Scholar 

  9. Celis, P., Vazquez, E., Soria-Hernández, C. G., Bargnani, D., Rodriguez, C. A., Ceretti, E., & García-López, E. (2022). Evaluation of ball end micromilling for Ti6Al4V ELI microneedles using a nanoadditive under MQL condition. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 1231–1246. https://doi.org/10.1007/s40684-021-00383-y

    Article  Google Scholar 

  10. Hu, Q., Sun, W., Lu, Y., Bomba, H. N., Ye, Y., Jiang, T., Isaacson, A. J., & Gu, Z. (2016). Tumor microenvironment-mediated construction and deconstruction of extracellular drug-delivery depots. Nano Letters, 16, 1118–1126. https://doi.org/10.1021/acs.nanolett.5b04343

    Article  Google Scholar 

  11. Dong, L., Li, Y., Li, Z., Xu, N., Liu, P., Du, H., Zhang, Y., Huang, Y., Zhu, J., Ren, G., Xie, J., Wang, K., Zhou, Y., Shen, C., Zhu, J., & Tao, J. (2018). Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors. ACS Applied Materials & Interfaces, 10, 9247–9256. https://doi.org/10.1021/acsami.7b18293

    Article  Google Scholar 

  12. Yu, J., Zhang, Y., Ye, Y., DiSanto, R., Sun, W., Ranson, D., Ligler, F. S., Buse, J. B., & Gu, Z. (2015). Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences, 112, 8260–8265. https://doi.org/10.1073/pnas.1505405112

    Article  Google Scholar 

  13. Lee, H., Choi, T. K., Lee, Y. B., Cho, H. R., Ghaffari, R., Wang, L., Choi, H. J., Chung, T. D., Lu, N., Hyeon, T., Choi, S. H., & Kim, D.-H. (2016). A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nature Nanotech, 11, 566–572. https://doi.org/10.1038/nnano.2016.38

    Article  Google Scholar 

  14. Dangol, M., Kim, S., Li, C. G., Fakhraei Lahiji, S., Jang, M., Ma, Y., Huh, I., & Jung, H. (2017). Anti-obesity effect of a novel caffeine-loaded dissolving microneedle patch in high-fat diet-induced obese C57BL/6J mice. Journal of Controlled Release, 265, 41–47. https://doi.org/10.1016/j.jconrel.2017.03.400

    Article  Google Scholar 

  15. Than, A., Liang, K., Xu, S., Sun, L., Duan, H., Xi, F., Xu, C., & Chen, P. (2017). Transdermal delivery of anti-obesity compounds to subcutaneous adipose tissue with polymeric microneedle patches. Small Methods, 1, 1700269. https://doi.org/10.1002/smtd.201700269

    Article  Google Scholar 

  16. Kim, J.-Y., Han, M.-R., Kim, Y.-H., Shin, S.-W., Nam, S.-Y., & Park, J.-H. (2016). Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer’s disease. European Journal of Pharmaceutics and Biopharmaceutics, 105, 148–155. https://doi.org/10.1016/j.ejpb.2016.06.006

    Article  Google Scholar 

  17. McCrudden, M. T. C., McAlister, E., Courtenay, A. J., González-Vázquez, P., Raj Singh, T. R., & Donnelly, R. F. (2015). Microneedle applications in improving skin appearance. Experimental Dermatology, 24, 561–566. https://doi.org/10.1111/exd.12723

    Article  Google Scholar 

  18. Pająk, J., Szepietowski, J. C., & Nowicka, D. (2022). Prevention of ageing—the role of micro-needling in neck and cleavage rejuvenation: A narrative review. IJERPH, 19, 9055. https://doi.org/10.3390/ijerph19159055

    Article  Google Scholar 

  19. Dhurat, R., Sukesh, M. S., Avhad, G., Dandale, A., Pal, A., & Pund, P. (2013). A randomized evaluator blinded study of effect of microneedling in androgenetic alopecia: A pilot study. International Journal of Trichology, 5, 6. https://doi.org/10.4103/0974-7753.114700

    Article  Google Scholar 

  20. Dhurat, R., & Mathapati, S. (2015). Response to microneedling treatment in men with androgenetic alopecia who failed to respond to conventional therapy. Indian Journal of Dermatology, 60, 260. https://doi.org/10.4103/0019-5154.156361

    Article  Google Scholar 

  21. Mishra, R. K., Vinu Mohan, A. M., Soto, F., Chrostowski, R., & Wang, J. (2017). A microneedle biosensor for minimally-invasive transdermal detection of nerve agents. The Analyst, 142, 918–924. https://doi.org/10.1039/C6AN02625G

    Article  Google Scholar 

  22. Ren, L., Liu, B., Zhou, W., & Jiang, L. (2020). A mini review of microneedle array electrode for bio-signal recording: A review. IEEE Sensors Journal, 20, 577–590. https://doi.org/10.1109/JSEN.2019.2944847

    Article  Google Scholar 

  23. Erdem, Ö., Eş, I., Akceoglu, G. A., Saylan, Y., & Inci, F. (2021). Recent advances in microneedle-based sensors for sampling, diagnosis and monitoring of chronic diseases. Biosensors, 11, 296. https://doi.org/10.3390/bios11090296

    Article  Google Scholar 

  24. Lu, H., Zada, S., Yang, L., & Dong, H. (2022). Microneedle-based device for biological analysis. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2022.851134

    Article  Google Scholar 

  25. Waghule, T., Singhvi, G., Dubey, S. K., Pandey, M. M., Gupta, G., Singh, M., & Dua, K. (2019). Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomedicine & Pharmacotherapy, 109, 1249–1258. https://doi.org/10.1016/j.biopha.2018.10.078

    Article  Google Scholar 

  26. Jung, J. H., & Jin, S. G. (2021). Microneedle for transdermal drug delivery: Current trends and fabrication. Journal of Pharmaceutical Investigation, 51, 503–517. https://doi.org/10.1007/s40005-021-00512-4

    Article  Google Scholar 

  27. Wang, R., Jiang, G., Aharodnikau, U. E., Yunusov, K., Sun, Y., Liu, T., & Solomevich, S. O. (2022). Recent advances in polymer microneedles for drug transdermal delivery: Design strategies and applications. Macromolecular Rapid Communications, 43, 2200037. https://doi.org/10.1002/marc.202200037

    Article  Google Scholar 

  28. Sullivan, S. P., Murthy, N., & Prausnitz, M. R. (2008). Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Advanced Materials, 20, 933–938. https://doi.org/10.1002/adma.200701205

    Article  Google Scholar 

  29. Kim, J. D., Kim, M., Yang, H., Lee, K., & Jung, H. (2013). Droplet-born air blowing: Novel dissolving microneedle fabrication. Journal of Controlled Release, 170, 430–436. https://doi.org/10.1016/j.jconrel.2013.05.026

    Article  Google Scholar 

  30. Baek, S.-H., Shin, J.-H., & Kim, Y.-C. (2017). Drug-coated microneedles for rapid and painless local anesthesia. Biomedical Microdevices, 19, 2. https://doi.org/10.1007/s10544-016-0144-1

    Article  Google Scholar 

  31. Chen, C.-H., Shyu, V.B.-H., & Chen, C.-T. (2018). Dissolving microneedle patches for transdermal insulin delivery in diabetic mice: Potential for clinical applications. Materials, 11, 1625. https://doi.org/10.3390/ma11091625

    Article  Google Scholar 

  32. Ingrole, R. S. J., & Gill, H. S. (2019). Microneedle coating methods: A review with a perspective. Journal of Pharmacology and Experimental Therapeutics, 370, 555–569. https://doi.org/10.1124/jpet.119.258707

    Article  Google Scholar 

  33. Davis, S. P., Martanto, W., Allen, M. G., & Prausnitz, M. R. (2005). Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Transactions on Biomedical Engineering, 52, 909–915. https://doi.org/10.1109/TBME.2005.845240

    Article  Google Scholar 

  34. Wang, P.-C., Paik, S.-J., Kim, S.-H., & Allen, M. G. (2014). Hypodermic-needle-like hollow polymer microneedle array: Fabrication and characterization. Journal of Microelectromechanical Systems, 23, 991–998. https://doi.org/10.1109/JMEMS.2014.2307320

    Article  Google Scholar 

  35. Bolton, C. J. W., Howells, O., Blayney, G. J., Eng, P. F., Birchall, J. C., Gualeni, B., Roberts, K., Ashraf, H., & Guy, O. J. (2020). Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery. Lab on a Chip, 20, 2788–2795. https://doi.org/10.1039/D0LC00567C

    Article  Google Scholar 

  36. Zhao, Z., Chen, Y., & Shi, Y. (2020). Microneedles: A potential strategy in transdermal delivery and application in the management of psoriasis. RSC Advances, 10, 14040–14049. https://doi.org/10.1039/D0RA00735H

    Article  Google Scholar 

  37. Kulkarni, D., Damiri, F., Rojekar, S., Zehravi, M., Ramproshad, S., Dhoke, D., Musale, S., Mulani, A. A., Modak, P., Paradhi, R., Vitore, J., Rahman, Md. H., Berrada, M., Giram, P. S., & Cavalu, S. (2022). Recent advancements in microneedle technology for multifaceted biomedical applications. Pharmaceutics, 14, 1097. https://doi.org/10.3390/pharmaceutics14051097

    Article  Google Scholar 

  38. He, Y. T., Liang, L., Zhao, Z. Q., Hu, L. F., Fei, W. M., Chen, B. Z., Cui, Y., & Guo, X. D. (2022). Advances in porous microneedle systems for drug delivery and biomarker detection: A mini review. Journal of Drug Delivery Science and Technology, 74, 103518. https://doi.org/10.1016/j.jddst.2022.103518

    Article  Google Scholar 

  39. Takeuchi, K., Takama, N., Kim, B., Sharma, K., Paul, O., & Ruther, P. (2019). Microfluidic chip to interface porous microneedles for ISF collection. Biomedical Microdevices, 21, 28. https://doi.org/10.1007/s10544-019-0370-4

    Article  Google Scholar 

  40. Jo, I.-S., Chung, S.-K., & Choi, K. (2024). Recent progress in self-powered sensors for structural and human monitoring systems using thermoelectric energy harvesters. International Journal of Precision Engineering and Manufacturing-Smart Technology, 2, 67–78. https://doi.org/10.57062/ijpem-st.2023.0108

    Article  Google Scholar 

  41. Cahill, E. M., Keaveney, S., Stuettgen, V., Eberts, P., Ramos-Luna, P., Zhang, N., Dangol, M., & O’Cearbhaill, E. D. (2018). Metallic microneedles with interconnected porosity: A scalable platform for biosensing and drug delivery. Acta Biomaterialia, 80, 401–411. https://doi.org/10.1016/j.actbio.2018.09.007

    Article  Google Scholar 

  42. Li, J., Liu, B., Zhou, Y., Chen, Z., Jiang, L., Yuan, W., & Liang, L. (2017). Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery. PLoS ONE, 12, e0172043. https://doi.org/10.1371/journal.pone.0172043

    Article  Google Scholar 

  43. van der Maaden, K., Luttge, R., Vos, P. J., Bouwstra, J., Kersten, G., & Ploemen, I. (2015). Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Deliv and Transl Res, 5, 397–406. https://doi.org/10.1007/s13346-015-0238-y

    Article  Google Scholar 

  44. Gholami, S., Mohebi, M.-M., Hajizadeh-Saffar, E., Ghanian, M.-H., Zarkesh, I., & Baharvand, H. (2019). Fabrication of microporous inorganic microneedles by centrifugal casting method for transdermal extraction and delivery. International Journal of Pharmaceutics, 558, 299–310. https://doi.org/10.1016/j.ijpharm.2018.12.089

    Article  Google Scholar 

  45. Humrez, L., Ramos, M., Al-Jumaily, A., Petchu, M., & Ingram, J. (2011). Synthesis and characterisation of porous polymer microneedles. Journal of Polymer Research, 18, 1043–1052. https://doi.org/10.1007/s10965-010-9505-2

    Article  Google Scholar 

  46. Nagamine, K., Kubota, J., Kai, H., Ono, Y., & Nishizawa, M. (2017). An array of porous microneedles for transdermal monitoring of intercellular swelling. Biomedical Microdevices, 19, 68. https://doi.org/10.1007/s10544-017-0207-y

    Article  Google Scholar 

  47. Li, J., Zhou, Y., Yang, J., Ye, R., Gao, J., Ren, L., Liu, B., Liang, L., & Jiang, L. (2019). Fabrication of gradient porous microneedle array by modified hot embossing for transdermal drug delivery. Materials Science and Engineering: C, 96, 576–582. https://doi.org/10.1016/j.msec.2018.11.074

    Article  Google Scholar 

  48. Park, J.-H., Choi, S.-O., Kamath, R., Yoon, Y.-K., Allen, M. G., & Prausnitz, M. R. (2007). Polymer particle-based micromolding to fabricate novel microstructures. Biomedical Microdevices, 9, 223–234. https://doi.org/10.1007/s10544-006-9024-4

    Article  Google Scholar 

  49. Liu, L., Kai, H., Nagamine, K., Ogawa, Y., & Nishizawa, M. (2016). Porous polymer microneedles with interconnecting microchannels for rapid fluid transport. RSC Advances, 6, 48630–48635. https://doi.org/10.1039/C6RA07882F

    Article  Google Scholar 

  50. Takeuchi, K., Takama, N., Kinoshita, R., Okitsu, T., & Kim, B. (2020). Flexible and porous microneedles of PDMS for continuous glucose monitoring. Biomedical Microdevices, 22, 79. https://doi.org/10.1007/s10544-020-00532-1

    Article  Google Scholar 

  51. Hou, Q., Grijpma, D. W., & Feijen, J. (2003). Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials, 24, 1937–1947. https://doi.org/10.1016/S0142-9612(02)00562-8

    Article  Google Scholar 

  52. Liu, P., Du, H., Chen, Y., Wang, H., Mao, J., Zhang, L., Tao, J., & Zhu, J. (2020). Polymer microneedles with interconnected porous structures via a phase inversion route for transdermal medical applications. Journal of Materials Chemistry B, 8, 2032–2039. https://doi.org/10.1039/C9TB02837D

    Article  Google Scholar 

  53. Hendrick, E., & Frey, M. (2014). Increasing surface hydrophilicity in poly(lactic acid) electrospun fibers by addition of Pla-b-Peg Co-polymers. Journal of Engineered Fibers and Fabrics, 9, 155892501400900220. https://doi.org/10.1177/155892501400900219

    Article  Google Scholar 

  54. Wischke, C., & Schwendeman, S. P. (2008). Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. International Journal of Pharmaceutics, 364, 298–327. https://doi.org/10.1016/j.ijpharm.2008.04.042

    Article  Google Scholar 

  55. Zhang, S., Yang, Z., Huang, X., Wang, J., Xiao, Y., He, J., Feng, J., Xiong, S., & Li, Z. (2022). Hydrophobic cellulose acetate aerogels for thermal insulation. Gels, 8, 671. https://doi.org/10.3390/gels8100671

    Article  Google Scholar 

  56. Song, J.-H., Min, S.-H., Kim, S.-G., Cho, Y., & Ahn, S.-H. (2022). Multi-functionalization strategies using nanomaterials: A review and case study in sensing applications. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 323–347. https://doi.org/10.1007/s40684-021-00356-1

    Article  Google Scholar 

  57. Ahmed, F., Ayoub Arbab, A., Jatoi, A. W., Khatri, M., Memon, N., Khatri, Z., & Kim, I. S. (2017). Ultrasonic-assisted deacetylation of cellulose acetate nanofibers: A rapid method to produce cellulose nanofibers. Ultrasonics Sonochemistry, 36, 319–325. https://doi.org/10.1016/j.ultsonch.2016.12.013

    Article  Google Scholar 

  58. Abser. M. N., Gaffar, M., & Islam, M. S. (2010). Mechanical feasibility analysis of process optimized silicon microneedle for biomedical applications. In International Conference on Electrical & Computer Engineering (ICECE 2010) (pp. 222–225), IEEE, Dhaka, Bangladesh. https://doi.org/10.1109/ICELCE.2010.5700668

  59. Aggarwal, P., & Johnston, C. R. (2004). Geometrical effects in mechanical characterizing of microneedle for biomedical applications. Sensors and Actuators B: Chemical, 102, 226–234. https://doi.org/10.1016/j.snb.2004.04.024

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grants funded by the Korean Government (MSIT) (No. 2020R1C1C1013487 and 2022R1C1C1003711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WooSeok Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Additional fle 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, S., Choi, Y., Choi, S. et al. Porous Polymer Microneedles with Superhydrophilic Surface for Rapid Fluid Transport. Int. J. Precis. Eng. Manuf. (2024). https://doi.org/10.1007/s12541-024-00999-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12541-024-00999-5

Keywords

Navigation