Skip to main content
Log in

Microfluidic chip to interface porous microneedles for ISF collection

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Porous microneedles (MNs) are expected to be applied for diagnostic microfluidic devices such as blood glucose monitoring as they enable a pain-free penetration of human skin and the extraction of interstitial fluids. However, conventional microfluidic systems require additional steps to separate the liquid from a porous structure used for fluid extraction. In this study, we developed a microfluidic system with a hydrodynamically designed interface between a porous MN array and microchannels to enable a direct analysis of liquids extracted by the porous MN array. The microfluidic chip with an interface for the MN array was successfully realized by standard MEMS processes, enabling a liquid flow through the whole microfluidic structure. The porous MN array was fabricated by the salt leaching and molding method, which was integrated with the chip and demonstrated the successful extraction of liquids from an agarose gel-based skin phantom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • M. Brown, S. Jones, J. Eur. Acad. Dermatol. Venereol. 19, 308 (2005)

    Article  Google Scholar 

  • E.M. Cahill, S. Keaveny, P. Ramos-Luna, E.D.C. O’Cearbhaill, 5th Int. Conf. Microneedles, pp. 89 (2018)

  • K.J. Cha, DS. Kim, Biomed. Microdevices. 13, 877 (2011)

    Article  Google Scholar 

  • A.A. Chavan, H. Li, A. Scarpellini, S. Marras, L. Manna, A. Athanassiou, D. Fragouli, . ACS Appl. Mater. Interfaces. 7, 14778 (2015)

    Article  Google Scholar 

  • S.J. Choi, T.H. Kwon, H. Im, D.I. Moon, D.J. Baek, M.L. Seol, J.P. Duarte, Y.K. Choi, ACS Appl. Mater. Interfaces. 3, 4552 (2011)

    Article  Google Scholar 

  • B. Chua, S.P. Desai, M.J. Tierney, J.A. Tamada, A.N. Jina, Sensors Actuators A Phys. 203, 373 (2013)

    Article  Google Scholar 

  • M. Dijkstra, M.J. de Boer, J.W. Berenschot, T.S.J. Lammerink, R.J. Wiegerink, M. Elwenspoek, J. Micromech. Microeng. 17, 1971 (2007)

    Article  Google Scholar 

  • I.K. Dimov, L. Basabe-Desmonts, J.L. Garcia-Cordero, B.M. Ross, A.J. Ricco, L.P. Lee, Lab Chip. 11, 845 (2011)

    Article  Google Scholar 

  • Z. Fekete, A. Pongrácz, P. Fürjes, G. Battistig, Microsys. Technol. 18, 353 (2012)

    Article  Google Scholar 

  • S.K. Garg, R.O. Potts, N.R. Ackerman, S.J. Fermi, J.A. Tamada, H.P. Chase, Diabetes Care. 22, 1708 (1999)

    Article  Google Scholar 

  • P. Griss, G. Stemme, In technical digest. 15th IEEE Int. Conf. Micro Electro Mechan. Sys., pp. 467 (2002)

  • P. Griss, G. Stemme, J. Microelectromec. Sys. 12, 296 (2003)

    Article  Google Scholar 

  • S. Henry, D.V. McAllister, M.G. Allen, M.R. Prausnitz, J. Pharm. Sci. 87, 922 (1998)

    Article  Google Scholar 

  • S. Hirobe, H. Azukizawa, K. Matsuo, Y. Zhai, Y.S. Quan, F. Kamiyama, H. Suzuki, I. Katayama, N. Okada, S. Nakagawa, Pharm. Res. 30, 2664 (2013)

    Article  Google Scholar 

  • Q. Hou, D.W. Grijpma, J. Feijen, Biomater. 24, 1937 (2003)

    Article  Google Scholar 

  • C. Ishino, M. Reyssat, E. Reyssat, K. Okumura, D. Quéré, EPL (Europhys. Lett.) 79, 56005 (2007)

    Article  Google Scholar 

  • M. Khorasani, H. Mirzadeh, Z. Kermani, Appl. Surf. Sci. 242, 339 (2005)

    Article  Google Scholar 

  • J.D. Kim, M. Kim, H. Yang, K. Lee, H. Jung, J. Control. Release. 170, 430 (2013)

    Article  Google Scholar 

  • K. Kim, D.S. Park, H.M. Lu, W. Che, K. Kim, J.B. Lee, C.H. Ahn, J. Micromech. Microeng. 14, 597 (2004)

    Article  Google Scholar 

  • S. Kurokawa, N. Takama, B. Kim, In 2017 JSPE Autumn Conf., pp. 943 (2017)

  • C.G. Li, C.Y. Lee, K. Lee, H. Jung, Biomed. Microdevices. 15, 17 (2013)

    Article  Google Scholar 

  • C.G. Li, H.A. Joung, H. Noh, M.B. Song, M.G. Kim, H. Jung, Lab Chip. 15, 3286 (2015)

    Article  Google Scholar 

  • L. Lin, A.P. Pisano, J. Microelectromec. Sys. 8, 78 (1999)

    Article  Google Scholar 

  • L. Liu, H. Kai, K. Nagamine, Y. Ogawa, M. Nishizawa, RSC Adv. 6, 48630 (2016)

    Article  Google Scholar 

  • D. Loewenstein, C. Stake, M. Cichon, Am. J. Emerg. Med. 31, 1236 (2013)

    Article  Google Scholar 

  • M.H. Madsen, N.A. Feidenhans’l, P.E. Hansen, J. Garnæs, K. Dirscherl, J. Micromech. Microeng. 24, 127002 (2014)

    Article  Google Scholar 

  • P.R. Miller, X. Xiao, I. Brener, D.B. Burckel, R. Narayan, R. Polsky, Adv. Healthcare Mater. 3, 876 (2013)

    Article  Google Scholar 

  • E. Mukerjee, S. Collins, R. Isseroff, Smith R., Sensors Actuators A Phys. 114, 267 (2004)

    Article  Google Scholar 

  • K. Nagamine, J. Kubota, H. Kai, Y. Ono, M. Nishizawa, Biomed. Microdevices. 19, 68 (2017)

    Article  Google Scholar 

  • J.D. Newman, A.P.F. Turner, Biosens. Bioelectron. 20, 2435 (2005)

    Article  Google Scholar 

  • D. Nicholas, K.A. Logan, Y. Sheng, J. Gao, S. Farrell, D. Dixon, B. Callan, A.P. McHale, J.F. Callan, Int. J. Pharm. 547, 244 (2018)

    Article  Google Scholar 

  • A. Palasz, J. Thundathil, R. Verrall, R. Mapletoft, Anim. Reprod. Sci. 58, 229 (2000)

    Article  Google Scholar 

  • P. Parikh, H. Mochari, L. Mosca, Am. J. Health Promot. 23, 279 (2009)

    Article  Google Scholar 

  • I. Park, Z. Li, X. Li, A.P. Pisano, R.S. Williams, Biosens. Bioelectron. 22, 2065 (2007)

    Article  Google Scholar 

  • J.-H. Park, M.G. Allen, M.R. Prausnitz, J. Control. Release. 51, 104 (2005)

    Google Scholar 

  • K. Pitts, S. Abu-Mallouh, M. Fenech, J. Mech. Behav. Biomed. Mater. 17, 333 (2013)

    Article  Google Scholar 

  • G. Pocock, C.D. Richards, D.A. Richards. (Oxford University Press, Oxford, 2013)

    Google Scholar 

  • A. Pongrácz, Z. Fekete, G. Márton, Z. s. Bérces, I. Ulbert, P. Fürjes, Sens. Actuators B. 189, 97 (2013)

    Article  Google Scholar 

  • M.R. Prausnitz, Adv. Drug Deliv. Rev. 56, 581 (2004)

    Article  Google Scholar 

  • L. Strambini, A. Longo, S. Scarano, T. Prescimone, I. Palchetti, M. Minunni, D. Giannessi, G. Barillaro, Biosens. Bioelectron. 66, 162 (2015)

    Article  Google Scholar 

  • H. Suzuki, T. Tokuda, K. Kobayashi, Sens. Actuators B: Chem. 83, 53 (2002)

    Article  Google Scholar 

  • H.L. Thanh, B.Q. Ta, H.L. The, V. Nguyen, K. Wang, F. Karlsen, J. Microelectromec. Sys. 24, 1583 (2015)

    Article  Google Scholar 

  • P. Thurgood, S. Baratchi, C. Szydzik, A. Mitchell, K. Khoshmanesh, Lab Chip. 17, 2517 (2017)

    Article  Google Scholar 

  • A. Trautmann, P. Ruther, O. Paul, pp. 682 In 16th IEEE Annu Int. Conf. Micro Electro Mechan. Sys. (2003)

  • A. Trautmann, F. Heuck, R. Denfeld, P. Ruther, O. Paul, In 19th IEEE Int. Conf. Micro Electro Mechan. Sys., pp. 434 (2006)

  • P.M. Wang, M. Cornwell, M.R. Prausnitz, Diabetes Technol. Ther. 7, 131 (2005)

    Article  Google Scholar 

  • J. Wu, J. Suls, W. Sansen, Sens. Actuators B: Chem. 78, 221 (2001)

    Article  Google Scholar 

  • L. Wu, A. Coleman, B. Kim, In 5th Int. Conf. Microneedles, pp. 64 (2018)

  • M.-Z. Yang, C.-L. Dai, C.-B. Hung, Microelectron. Eng. 97, 353 (2012)

    Article  Google Scholar 

  • W. Yao, Y. Li, G. Ding, Evid. Based Complement. Alternat. Med. 2012, 9 (2012)

    Google Scholar 

  • X. Zhao, L. Li, B. Li, J. Zhang, A. Wang, J. Mater. Chem. A. 2, 18281 (2014)

    Article  Google Scholar 

  • Y. Zhao, S. Li, A. Davidson, B. Yang, Q. Wang, Q. Lin, J. Micromech. Microeng. 17, 2528 (2007)

    Article  Google Scholar 

  • M. Zimmermann, P. Hunziker, E. Delamarche, Microfluid. Nanofluid. 5, 395 (2008)

    Article  Google Scholar 

  • S. Zimmermann, D. Fienbork, B. Stoeber, A.W. Flounders, D. Liepmann, In: TRANSDUCERS 12th Int. Conf. Solid-State Sensors, Actuators and Microsystems, pp. 99 (2003)

Download references

Acknowledgements

This work was supported by the Cluster of Excellence BrainLinks-BrainTools through the German Research Foundation (DFG) under Grant EXC 1086 and the DFG project Phytochromes under Grant RU 869/5-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beomjoon Kim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biomedical MicroNeedles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeuchi, K., Takama, N., Kim, B. et al. Microfluidic chip to interface porous microneedles for ISF collection. Biomed Microdevices 21, 28 (2019). https://doi.org/10.1007/s10544-019-0370-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0370-4

Keywords

Navigation