Skip to main content
Log in

Optimal Process Design of an Optimal, Single-Stage, Symmetrical L-Bending Process Employing Taguchi Method with Finite Element Method, and Experimental Verification Thereof

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

A single-stage, precision, symmetrical L-bending process is developed, which employs a forming-load control die for progressive sheet-metal forming of a circuit-breaker. It is targeted to replace the traditional two-stage symmetrical L-bending process, which features rough bending followed by fine sizing/adjustment to meet the required geometrical tolerances. The new process requires optimization since the die controls springback caused by the pressing load imparted to the shoulder by the same die. The Taguchi method is thus used to optimize the process design using an elastoplastic finite element method in terms of the tilt angle after springback and the leg length of the resulting bent region. The finite element predictions of the optimized process are in excellent agreement with the experimental data and there are no cases of failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ling, Y. E., Lee, H. P., & Cheok, B. T. (2005). Finite element analysis of springback in L-bending of sheet metal. Journal of Materials Processing Technology, 168(2), 296–302.

    Article  Google Scholar 

  2. Kumar, K. D., Appukuttan, K. K., Neelakantha, V. L., & Naik, P. S. (2014). Experimental determination of spring back and thinning effect of aluminum sheet metal during L-bending operation. Materials & Design, 56, 613–619.

    Article  Google Scholar 

  3. Buang, M. S., Abdullah, S. A., & Saedon, J. (2015). Effect of die and punch radius on springback of stainless steel sheet metal in the air V-die bending process. Journal of Mechanical Engineering and Sciences, 8, 1322–1331.

    Article  Google Scholar 

  4. Özdemir, M., Gökmese, H., Dilipak, H., & Yilmaz, V. (2015). Characterization of microstructure and bending response of sheet material: Influence of thickness. Journal of Advanced Materials and Processing, 3(1), 3–14.

    Google Scholar 

  5. Thipprakmas, S., & Rojananan, S. (2008). Investigation of spring-go phenomenon using finite element method. Materials & Design, 29(8), 1526–1532.

    Article  Google Scholar 

  6. Chen, F. K., & Ko, S. F. (2011). Deformation analysis of springback in L-bending of sheet metal. Advanced Science Letters, 4(6–7), 1928–1932.

    Article  Google Scholar 

  7. Chatti, S., & Hermi, N. (2011). The effect of non-linear recovery on springback prediction. Computers & Structures, 89(13–14), 1367–1377.

    Article  Google Scholar 

  8. Chatti, S., & Fathallah, R. (2014). A study of the variations in elastic modulus and its effect on springback prediction. International Journal of Material Forming, 7(1), 19–29.

    Article  Google Scholar 

  9. Jamli, M. R., Ariffin, A. K., & Wahab, D. A. (2015). Incorporating feedforward neural network within finite element analysis for L-bending springback prediction. Expert Systems with Applications, 42(5), 2604–2614.

    Article  Google Scholar 

  10. Valinezhad, M., Etemadi, E., Hashemi, R., & Valinezhad, M. (2019). Experimental and FE analysis on spring-back of copper/aluminum layers sheet for a L-die bending process. Materials Research Express, 6(11), 1165h4.

    Article  Google Scholar 

  11. Song, J. H., Huh, H., Kim, S. H., & Park, S. H. (2005). Springback reduction in stamping of front side member with a response surface method. AIP Conference Proceedings, 778(1), 303–308.

    Article  Google Scholar 

  12. Gassara, F., Hambli, R., Bouraoui, T., El Halouani, F., & Soulat, D. (2009). Optimization of springback in L-bending process using a coupled Abaqus/Python algorithm. The International Journal of Advanced Manufacturing Technology, 44(1–2), 61–67.

    Article  Google Scholar 

  13. Kuo, C. C., & Lin, B. T. (2012). Optimization of springback for AZ31 magnesium alloy sheets in the L-bending process based on the Taguchi method. The International Journal of Advanced Manufacturing Technology, 58(1–4), 161–173.

    Article  Google Scholar 

  14. Kitayama, S., & Yoshioka, H. (2014). Springback reduction with control of punch speed and blank holder force via sequential approximate optimization with radial basis function network. International Journal of Mechanics and Materials in Design, 10(2), 109–119.

    Article  Google Scholar 

  15. Adzman, M. S., & Zakaria, A. (2014). Springback-free sheet metal structural part design by topography optimization. Applied Mechanics and Materials, 606, 171–175.

    Article  Google Scholar 

  16. Hong, S., & Hwang, J. (2014). Bead optimization to reduce springback of sheet metal forming using high strength steel. Journal of the Korean Society of Manufacturing Technology Engineers, 23(4), 350–354.

    Article  Google Scholar 

  17. Jafari, M., Lotfi, M., Ghaseminejad, P., Roodi, M., & Teimouri, R. (2015). Numerical control and optimization of springback in L-bending of magnesium alloy through FE analysis and artificial intelligence. Transactions of the Indian Institute of Metals, 68(5), 969–979.

    Article  Google Scholar 

  18. Salvi, H., Mestry, S., & Kavatkar, T. (2016). Experimental investigation for minimization of spring back in L bending using Taguchi design of experiments. International Journal for Innovative Research in Science & Technology, 2(9), 35–42.

    Google Scholar 

  19. Reddy, P. V., Krishnudu, D. M., Pranavi, U., & Ramulu, P. J. (2019). Optimization of the forming parameters in U-bending for punch force and springback using Taguchi method. In Advances in computational methods in manufacturing, 75–84. Springer

  20. El Mrabti, I., Touache, A., El Hakimi, A., & Chamat, A. (2021). Springback optimization of deep drawing process based on FEM-ANN-PSO strategy. Structural and Multidisciplinary Optimization, 64, 321–333.

    Article  Google Scholar 

  21. Eom, J. G., Chung, W. J., & Joun, M. S. (2014). Comparison of rigid-plastic and elastoplastic finite element predictions of a tensile test of cylindrical specimens. Key Engineering Materials, 622, 611–616.

    Article  Google Scholar 

  22. Chang, M. J., Kim, G. H., Lee, C. J., Kim, B. M., Lee, S. B., & Ko, D. C. (2011). Progressive process design of integrated part for mobile phone. Transactions of Materials Processing, 20(2), 110–117.

    Article  Google Scholar 

  23. Park, K. G., Moon, H. G., Oh, S. K., & Joun, M. S. (2020). Development of combined sheet metal forming and plate forging of a metal seal part of hub bearing for an automobile. Transactions of Materials Processing, 29, 194–202.

    Google Scholar 

  24. Joun, M. S., Moon, H. G., Choi, I. S., Lee, M. C., & Jun, B. Y. (2009). Effects of friction laws on metal-forming processes. Tribology International, 42, 311–319.

    Article  Google Scholar 

  25. Joun, M. S. (2020). Recent advances in metal forming simulation technology for automobile parts by AFDEX. IOP Conference Series Materials Science and Engineering, 834, 012016.

    Article  Google Scholar 

  26. Mathews, P. G. (2005). Design of Experiments with MINITAB. ASQ Quality Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Soo Joun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, M., Kim, S. & Joun, M.S. Optimal Process Design of an Optimal, Single-Stage, Symmetrical L-Bending Process Employing Taguchi Method with Finite Element Method, and Experimental Verification Thereof. Int. J. Precis. Eng. Manuf. 23, 395–404 (2022). https://doi.org/10.1007/s12541-022-00631-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00631-4

Keywords

Navigation