Skip to main content
Log in

Springback reduction with control of punch speed and blank holder force via sequential approximate optimization with radial basis function network

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This paper proposes a springback reduction technique with the control of punch speed and blank holder force (BHF) via sequential approximate optimization (SAO). Springback is one of the major defects in sheet forming and its reduction is a crucial issue for improving product quality. Computer-aided-engineering is one of the helpful tools for predicting springback and widely used in automotive industries. Various approaches are considered for springback reduction, and we optimize the punch speed as well as BHF (variable BHF). Sheet forming simulation is generally costly and time-consuming, and the SAO with the radial basis function network is used to determine the optimal punch speed and variable BHF. The U-shaped forming in NUMISHEET’93 is used in the numerical simulation. The standard deviation of the bending moment is minimized subject tearing evaluated with the forming limit diagram. The punch speed and the variable BHF are taken as the design variables. The validity is examined through numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bonte, M.H.A., van den Boogaard, A.H., Huetink, J.: An optimization strategy for industrial metal forming processes. Struct. Multidiscip. Optim. 35, 571–586 (2008)

    Article  Google Scholar 

  • Bonte, M.H.A., Fourment, L., Do, T.T., van den Boogaard, A.H., Huetink, J.: Optimization of forging processes using finite element simulations. Struct. Multidiscip. Optim. 42, 797–810 (2010)

    Article  Google Scholar 

  • Cao, J., Kinsey, B., Solla, S.A.: Consistent and minimal springback using a stepped binder force trajectory and neural network control. J. Eng. Mater. Technol. 122, 113–118 (2000)

    Article  Google Scholar 

  • Choi, K.K., Kim, N.H.: Design optimization of springback in a deepdrawing process. AIAA J. 40(1), 147–153 (2002)

    Article  Google Scholar 

  • Hillmann, M., Kubli, W.: Optimization of sheet metal forming processes using simulation programs. In: NUMISHEET’99, Beasnc, France, 1999, vol. 1, pp. 287–292

  • Ingaroa, G., Di Lorenzo, R.: Analysis of stamping performances of dual phase steels: a multi-objective approach to reduce springback and thinning failure. Mater. Des. 30, 4421–4433 (2009)

    Article  Google Scholar 

  • Jakumeit, J., Herdy, M., Nitsche, M.: Parameter Optimization of the sheet metal forming process using an iterative parallel Kriging algorithm. Struct. Multidiscip. Optim. 29, 498–507 (2005)

    Article  Google Scholar 

  • Jiang, C., Han, X., Liu, G.R., Li, G.Y.: The optimization of the variable binder force in U-shaped forming with uncertain friction coefficient. J. Mater. Process. Technol. 182, 262–267 (2007)

    Article  Google Scholar 

  • Kitayama, S., Arakawa, M., Yamazaki, K.: Sequential approximate optimization using radial basis function network for engineering optimization. Optim. Eng. 12(4), 535–557 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Lee, S.W., Yang, D.Y.: An assessment of numerical parameters influencing springback in explicit finite element analysis of sheet metal forming process. J. Mater. Process. Technol. 80–81, 60–67 (1998)

    Article  Google Scholar 

  • Lepadatu, D., Hambli, R., Kobi, A., Barreau, A.: Optimisation of springback in bending processes using FEM simulation and response surface. Int. J. Adv. Manuf. Technol. 25, 40–47 (2005)

    Article  Google Scholar 

  • Li, E.: Reduction of springback by intelligent sampling-based LSSVR metamodel-based optimization. Int. J. Mater. Form. 6, 103–114 (2013)

    Article  Google Scholar 

  • Liu, G., Lin, Z., Xu, W., Bao, Y.: Variable blank holder force in U-shaped part forming for eliminating springback error. J. Mater. Process. Technol. 120, 259–264 (2002)

    Article  Google Scholar 

  • Nakayama, H., Arakawa, M., Sasaki, R.: Simulation-based optimization using computational intelligence. Optim. Eng. 3, 201–214 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Papeleux, L., Ponthot, J.P.: Finite element simulation of springback in sheet metal forming. J. Mater. Process. Technol. 125–126, 785–791 (2002)

    Article  Google Scholar 

  • Song, J.H., Huh, H., Kim, S.H.: Stress-based springback reduction of a channel shaped auto-body part with high-strength steel using response surface methodology. J. Eng. Mater. Technol. 129, 397–406 (2007)

    Article  Google Scholar 

  • Sunseri, M., Cao, J., Karafillis, A.P., Boyce, M.C.: Accommodation of springback error in channel forming using active binder force control: numerical simulation and experiments. J. Eng. Mater. Technol. 118, 426–435 (1996)

    Article  Google Scholar 

  • Tozawa, Y.: Theoretical analysis on springback of thin plate. J. Jpn Soc. Mech. Eng. 68(559), 1090–1097 (1965)

    Google Scholar 

  • Wang, H., Li, E., Li, G.Y.: Optimization of drawbead design in sheet metal forming based on intelligent sampling by using response surface methodology. J. Mater. Process. Technol. 206, 45–55 (2008a)

    Article  Google Scholar 

  • Wang, H., Li, G.Y., Zhong, Z.H.: Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method. J. Mater. Process. Technol. 197, 77–88 (2008b)

    Article  Google Scholar 

  • Wang, H., Li, E., Li, G.Y.: The least square support vector regression coupled with parallel sampling scheme metamodeling technique and application in sheet forming optimization. Mater. Des. 30, 1468–1479 (2009)

    Article  Google Scholar 

  • Wang, H., Li, E., Li, G.Y.: Parallel boundary and best neighbor searching sampling algorithm for drawbead design optimization in sheet metal forming. Struct. Multidiscip. Optim. 41, 309–324 (2010)

    Article  Google Scholar 

  • Wang, H., Li, G., Li, E.: A Comparative study of boundary-based intelligent sampling approaches for nonlinear optimization. Appl. Soft Comput. 11(2), 2227–2238 (2011)

    Article  Google Scholar 

  • Xu, W.L., Ma, C.H., Li, C.H., Feng, W.J.: Sensitive factors in springback simulation for sheet metal forming. J. Mater. Process. Technol. 151, 217–222 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Kitayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitayama, S., Yoshioka, H. Springback reduction with control of punch speed and blank holder force via sequential approximate optimization with radial basis function network. Int J Mech Mater Des 10, 109–119 (2014). https://doi.org/10.1007/s10999-013-9234-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-013-9234-x

Keywords

Navigation