Skip to main content
Log in

Optimization of springback in L-bending process using a coupled Abaqus/Python algorithm

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Sheet metal L-bending processes are widely used for mass production. The design of L-bending processes is connected with time-consuming and costly experiments. Therefore, the finite element simulation of the process could be a helpful tool for the designer and quality assurance of the products. In L-bending process, springback is an important phenomenon, and its accurate prediction is important to control the final shape of the workpiece when the punch is removed. In this study, an optimization algorithm using Gauss–Newton method was developed by coupling the Abaqus/standard code and Python script which is an object-oriented language. For a given bending process problem, the proposed algorithm allows for the optimization of a set of material and/or process factors in order to minimize the workpiece springback. Python scripts allow the direct parameterization of the design variables to be optimized in the finite element input file, and hence an easy use of the procedure within the framework of industrial application. An example is presented in order to optimize three process parameters, namely, die corner radius, punch–die clearance, and the blank holder force. The results demonstrate the reliability of the proposed approach and the fast convergence of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang ZT, Lee D (1995) Development of a new model for plane strain bending and springback analysis. J Mater Eng Perform 3:291–300. doi:10.1007/BF02649066

    Article  Google Scholar 

  2. Makinouchi A, Nakamichi E, Onate E, Wagoner RH (1995) Prediction of spring-back and side-wall curl in 2-D draw bending. J Mater Process Technol 20:361–374

    Google Scholar 

  3. Date PP, Narashima K, Maiti SK, Singh UP (1999) On the prediction of spring back in vee bending of metallic sheets under plane strain condition. International Conference on Sheet Metal, Earlangen, Germany, pp 447–456

  4. Frank R, Kees D (1994) The influence of the clearance on the springback with bending, International Conference on Sheet Metal. University of Ulster, North Ireland, pp 335–342

  5. Wenner ML (1983) On the work hardening and springback in plane strain draw forming. J Appl Metalwork Vol. 2:277–287. doi:10.1007/BF02833912

    Article  Google Scholar 

  6. Tekiner Z (2004) An experimental study on the examination of springback of sheet metals with several thicknesses and properties in bending dies. J Mater Process Technol 145:109–117. doi:10.1016/j.jmatprotec.2003.07.005

    Article  Google Scholar 

  7. Hill R (1990) Constitutive modeling of orthotropic plasticity in sheet metals. J Mech Phys Solids 38:405–417. doi:10.1016/0022-5096(90)90006-P

    Article  MATH  MathSciNet  Google Scholar 

  8. Kalpakjian S (1991) Manufacturing process for engineering materials, 2nd edn. Addision-Wesley, USA

    Google Scholar 

  9. Marron G, Bouchêlier C (1995) Le pliage des aciers HLE prévision et maîtrise du retour élastique. Revue de la métallurgie, pp 121–130

  10. Mkaddem A, Saidane D, Onate E, Wagoner RH (2007) Experimental approach and RSM procedure on the examination springback in wiping-die bending process. J Mater Process Technol 189:325–333. doi:10.1016/j.jmatprotec.2007.02.004

    Article  Google Scholar 

  11. Ogawa H (2001) A study of bottoming bend and coining bend of sheet metal. Proceedings of the 9th International Conference on Sheet Metal, pp 247–254

  12. Serruys W (2001) Adaptative bending. Proceedings of the 9th International Conference on Sheet Metal, pp 503–512

  13. Anokye-Siribor K, Singh UP, Agahi P (2000) Determination of spring back in air bending using parabolic model. Proceedings of the 8th International Conference on Sheet Metal, pp 529–540

  14. Livatyali H, Altan T (2001) Prediction and elimination of springback in straight flanging using computer aided design methods. J Mater Process Technol 123:348–354

    Google Scholar 

  15. Han SS, Park KC (1999) An investigation of the factors influencing springback by empirical and simulative techniques. International Conference of Numisheet, Besancon, France, pp 53–57

  16. Panthi SK, Ramakrishnan N, Pathak KK, Chouhan JS (2007) An analysis of springback in sheet metal bending using finite element method (FEM). J Mater Process Technol 186:120–124. doi:10.1016/j.jmatprotec.2006.12.026

    Article  Google Scholar 

  17. Cho JR, Moon SJ, Moon YH, Kang SS (2003) Finite element investigation on springback characteristics in sheet metal U-bending process. J Mater Process Technol 141:109–116. doi:10.1016/S0924-0136(03)00163-8

    Article  Google Scholar 

  18. Li X, Yang Y, Wang Y, Bao J, Li S (2002) Effect of the material-hardening mode on the springback simulation accuracy of V-free bending. J Mater Process Technol 123:209–211

    Google Scholar 

  19. Math M, Grizelj B (2001) Finite element approach in the plate bending process. J Mater Process Technol 125–126:778–784. doi:10.1016/S0924-0136(02)00391-6

    Google Scholar 

  20. Choudhry S, Lee JK (1994) Dynamic plane-strain finite element simulation of industrial sheet-metal forming processes. Int J Mech Sci 36:189–207. doi:10.1016/0020-7403(94)90069-8

    Article  MATH  Google Scholar 

  21. Papeleux L, Ponthot JP (2002) Finite element simulation of springback in sheet metal forming. J Mater Process Technol 125–126:785–791. doi:10.1016/S0924-0136(02)00393-X

    Article  Google Scholar 

  22. Chou IN, Hung C (1999) Finite element analysis and optimization on springback reduction. Int J Mach Tools Manuf 39:517–536. doi:10.1016/S0890-6955(98)00031-5

    Article  Google Scholar 

  23. Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York

    Book  MATH  Google Scholar 

  24. Fletcher R (2000) Practical methods of optimization. Wiley, New York

    Google Scholar 

  25. Renner G, Ekárt A (2003) Genetic algorithms in computer aided design. Computer-Aided Des 35:709–726. doi:10.1016/S0010-4485(03)00003-4

    Article  Google Scholar 

  26. Inamdar MV, Date PP, Desai UB (2000) Studies on the prediction of springback in air vee bending of metallic sheets using an artificial neural network. J Mater Process Technol 108:45–54. doi:10.1016/S0924-0136(00)00588-4

    Article  Google Scholar 

  27. Lepadatu D, Hambli H, Kobi A, Barreau A (2005) Optimisation of springback in bending processes using FEM simulation and response surface method. Int J Adv Manuf Technol 27:40–47. doi:10.1007/s00170-004-2146-z

    Article  Google Scholar 

  28. Hibbitt, Krlsson and Sorensen, Inc. (2006) ABAQUS manual

  29. Samuel M (2000) Experimental and numerical prediction of springback and side wall curl in U-bendings of anisotropic sheet metals. J Mater Process Technol 105:382–393. doi:10.1016/S0924-0136(00)00587-2

    Article  Google Scholar 

  30. Kleinermann JP, Ponthot JP (2000) Parameter identification using inverse problems methodology in metal forming simulation. In: Topping BHV (ed) Finite element techniques and development. Proceedings of the Second International Conference on Engineering Computational Technology. Leuven, Belgium, 6–8 Sept, pp 279–284

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Hambli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gassara, F., Hambli, R., Bouraoui, T. et al. Optimization of springback in L-bending process using a coupled Abaqus/Python algorithm. Int J Adv Manuf Technol 44, 61–67 (2009). https://doi.org/10.1007/s00170-008-1819-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1819-4

Keywords

Navigation