Skip to main content
Log in

Research Development of Preload Technology on Angular Contact Ball Bearing of High Speed Spindle: A Review

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Preload of angular contact ball bearing (ACBB) is extremely important to high speed spindle, which has a great influence on the spindle’s dynamic and thermal characteristics, etc. In this paper, the preload source of ACBB; the main preload principles, methods and their advantages and disadvantages; research progress and development trend of preload device are discussed. On the basis, common criteria for computing and choosing optimal preload; influence of preload on dynamic and thermal properties of bearing and spindle system are discussed as well. The purposes of this paper are to clarify the research idea of preload, and provide a reference for accurately calculating the bearing stiffness under sophisticated conditions, precisely controlling dynamic parameters of high speed spindle, designing preload device with excellent dynamic performance, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Zhang, J., Fang, B., Zhu, Y., & Hong, J. (2017). A comparative study and stiffness analysis of angular contact ball bearings under different preload mechanisms. Mechanism and Machine Theory,115, 1–17.

    Article  Google Scholar 

  2. Oouchi, S., Nomura, H., Wu, K. D., Chen, Y. R., & Hung, J. P. (2014). Variation of the dynamic characteristics of a spindle with the change of bearing preload. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering,8(10), 1680–1683.

    Google Scholar 

  3. Qiu, Q. (2016). Machine tool motorized spindle preload and clamping force on the influence law of dynamic and static characteristics. Ph.D. thesis, Shanghai Jiao Tong University, China.

  4. GMN bearing USA ltd. Spindle bearing arrangements & bearing preload design. Retrieved July 6, 2018 from https://www.gmnbt.com/spindle-bearings-technical-info.htm.

  5. Li, H., & Shin, Y. C. (2004). Analysis of bearing configuration effects on high speed spindles using an integrated dynamic thermo-mechanical spindle model. International Journal of Machine Tools and Manufacture,44(4), 347–364.

    Article  Google Scholar 

  6. Chen, J. W., Ge, P. Q., & Jun, H. (2012). Analysis on axial preload of angular contact ball bearings assembly. Modular Machine Tool & Automatic Manufacturing Technique, 4(4), 76–79.

    Google Scholar 

  7. Abele, E., Altintas, Y., & Brecher, C. (2010). Machine tool spindle units. CIRP Annals-Manufacturing Technology,59, 781–802.

    Article  Google Scholar 

  8. Cao, H., Holkup, T., & Altintas, Y. (2011). A comparative study on the dynamics of high speed spindles with respect to different preload mechanisms. International Journal of Advanced Manufacturing Technology,57(9–12), 871–883.

    Article  Google Scholar 

  9. FAG. (2011). The latest Chinese samples of ultra-precision bearings. Herzogenaurach: Schaeffler Technologies GmbH & Co. KG.

    Google Scholar 

  10. Bossmanns, B., & Tu, J. F. (2001). A power flow model for high speed motorized spindles heat generation characterization. Journal of Manufacturing Science and Engineering,123, 494–505.

    Article  Google Scholar 

  11. Chen, Y. J., Hung, J. P., Wu, K. D., & Shih, W. C. (2017). Experimental measurement and FEM modeling of the dynamic characteristics of the milling spindle with different bearing preload. Journal of the Chinese Society of Mechanical Engineers,38, 53–61.

    Google Scholar 

  12. He, J. P. (2007). Research and dynamic analysis on the preload control of motorized spindle. Master thesis, Southeast University, China.

  13. Wang, H. Y. (2017). Study on the design and characteristics of the machine tool high speed spindle preload mechanism. Master thesis, Tianjin University of Technology, China.

  14. Wu, W., Li, X., Xu, F., Hong, J., & Li, Y. (2014). Investigating effects of non-uniform preload on the thermal characteristics of angular contact ball bearing through simulations. Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology,228, 667–681.

    Article  Google Scholar 

  15. Harris, T. A. (2001). Rolling bearing analysis. New York: Wiley.

    Google Scholar 

  16. Yan, K., Yan, B., Wang, Y., Hong, J., & Zhang, J. (2018). Study on thermal induced preload of ball bearing with temperature compensation based on state observer approach. International Journal of Advanced Manufacturing Technology,94, 3029–3040.

    Article  Google Scholar 

  17. Tu, J. F. (1991). On-line preload monitoring for high-speed anti-friction spindle bearings using robust state observers. Ph.D. thesis, University of Michigan, USA.

  18. Burton, R. A., & Staph, H. E. (1967). Thermally activated seizure of angular contact bearings. ASLE Transactions,10(4), 408–417.

    Article  Google Scholar 

  19. Carmichael, G. D. T., & Davies, P. B. (1970). Measurement of thermally induced preloads in bearings. Strain,6(4), 162–165.

    Article  Google Scholar 

  20. Carmichael, G. D. T., & Davies, P. B. (1972). Factors which affect the transient behaviour of preloaded ball bearing assemblie. ASLE Transactions,15(1), 1–7.

    Article  Google Scholar 

  21. Sud, O. N., Davies, P. B., & Halling, J. (1974). The thermal behaviour of rolling bearing assemblies subjected to preload. Wear,27(2), 237–249.

    Article  Google Scholar 

  22. Pruvot, F. C., & Mottu, A. (1980). High speed bearings for machine tool spindles. CIRP Annals - Manufacturing Technology,29, 293–297.

    Article  Google Scholar 

  23. Jiang, C. (1988). Experimental investigation of water cooling inside the spindle-bearing system. Jichuang/Machine Tools,12, 15–19.

    Google Scholar 

  24. Stein, J. L., & Tu, J. F. (1994). A state-space model for monitoring thermally induced preload in anti-friction spindle bearings of high-speed machine tools. Journal of Dynamic Systems, Measurement, and Control,116(3), 372–386.

    Article  MATH  Google Scholar 

  25. Tu, J., & Katterjr, J. (1996). Bearing force monitoring in a three-shift production environment. ASLE Transactions,39(1), 201–207.

    Google Scholar 

  26. Tu, J. F., & Stein, J. L. (1996). Active thermal preload regulation for machine tool spindles with rolling element bearings. Journal of Manufacturing Science and Engineering,118(4), 499–505.

    Article  Google Scholar 

  27. Takabi, J., & Khonsari, M. M. (2015). On the thermally-induced seizure in bearings: A review. Tribology International,91, 118–130.

    Article  Google Scholar 

  28. Hwang, Y. K., & Lee, C. M. (2010). A review on the preload technology of the rolling bearing for the spindle of machine tools. International Journal of Precision Engineering & Manufacturing,11(3), 491–498.

    Article  Google Scholar 

  29. Hong, S. W., & Tong, V. C. (2016). Rolling-element bearing modeling: A review. International Journal of Precision Engineering & Manufacturing,17(12), 1729–1749.

    Article  Google Scholar 

  30. Cao, H., Niu, L., Xi, S., & Chen, X. (2018). Mechanical model development of rolling bearing-rotor systems: A review. Mechanical Systems and Signal Processing,102, 37–58.

    Article  Google Scholar 

  31. NSK. (2018). Rolling bearing technical manual. Tokyo: NSK LTD.

    Google Scholar 

  32. SKF. (2014). Super precision bearings. Gothenburg: SKF Group.

    Google Scholar 

  33. Harris, T. A. (1965). How to compute the effects of preloaded bearings. Production Engineering,19, 84–93.

    Google Scholar 

  34. Hagiu, G. D., & Gafitanu, M. D. (1994). Preload-service life correlation for ball bearings on machine tool main spindles. Wear,172(1), 79–83.

    Article  Google Scholar 

  35. Hernot, X., Sartor, M., & Guillot, J. (2000). Calculation of the stiffness matrix of agular contact ball bearing by using the analytical approach. Journal of Mechanical Design,122(1), 83–90.

    Article  Google Scholar 

  36. Cai, J., & Jiang, S. Y. (2008). Theoretical analysis of preload of high-speed machine spindle bearing. Precision Manufacturing and Automation,3, 29–32.

    Google Scholar 

  37. Hwang, Y. K., & Lee, C. M. (2015). Development of a simple determination method of variable preloads for high speed spindle-s in machine tools. International Journal of Precision Engineering & Manufacturing,16(1), 127–134.

    Article  MathSciNet  Google Scholar 

  38. Zhang, J., Fang, B., Hong, J., & Zhu, Y. (2017). Effect of preload on ball-raceway contact state and fatigue life of angular contact ball bearing. Tribology International,114, 365–372.

    Article  Google Scholar 

  39. Ngo, T. T., Than, V. T., Wang, C. C., & Huang, J. H. (2018). Analyzing characteristics of high-speed spindle bearing under constant preload. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology,232(5), 568–581.

    Article  Google Scholar 

  40. Xu, T., Xu, G., Zhang, Q., Hua, C., Tan, H., Zhang, S., et al. (2013). A preload analytical method for ball bearings utilizing bearing skidding criterion. Tribology International,67, 44–50.

    Article  Google Scholar 

  41. Yuan, S. H., Guo, K., & Hu, J. B. (2011). Investigation on the minimum axial force to aviod sliding for high-speed ball bearings. Transaction of Beijing Institute of Technology,31(9), 1027–1031.

    Google Scholar 

  42. Jia, Q. Y. (1996). Calculation and selection of preload for angular contact ball bearings. Bearing,1, 5–7.

    Google Scholar 

  43. Kim, S. M., & Lee, S. K. (2001). Prediction of thermo-elastic behavior in a spindle–bearing system considering bearing surroundings. International Journal of Machine Tools and Manufacture,41(6), 809–831.

    Article  Google Scholar 

  44. Liu, X. J., Hong, J., & Liu, Z. G. (2011). Numerical analysis method on preload selection for machine tool spindle under different load conditions. Computer Aided Engineering,20(2), 90–94.

    Google Scholar 

  45. Li, H. L., Xia, N., Deng, S. E., Li, J. H., & Liu, L. Y. (2013). Analysis on initial preload of paired angular contact ball bearings. Bearings,8, 1–3.

    Google Scholar 

  46. Xu, T., Xu, G. H., Zhang, Q., Hua, C., & He, Q. Q. (2012). Estimation for bearing preload of machine tool spindle based on vibration signal. In W. Deng & Q. Luo (Ed.) Applied mechanics and materials (Vol. 236, pp. 1251–1257). Bäch: BächTrans Tech Publications.

    Google Scholar 

  47. Xu, T., Xu, G., Zhang, Q., Zhang, S., & Luo, A. (2016). An optimum preload method for machine tool spindle ball bearings. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,230(11), 2016–2025.

    Article  Google Scholar 

  48. Hirano, F. (1965). Motion of a ball in angular-contact ball bearing. ASLE Transactions,8(4), 425–434.

    Article  Google Scholar 

  49. Jiang, X. Q., Ma, J. J., & Fan, G. Y. (2001). Calculation of minimum preload for high-speed precision angular contact ball bearings. Bearing,6, 1–4.

    Google Scholar 

  50. Zverv, I., Pyoun, Y. S., Lee, K. B., Kim, J. D., Jo, I., & Combs, A. (2005). An elastic deformation model of high speed spindles built into ball bearings. Journal of Materials Processing Technology,170(3), 570–578.

    Article  Google Scholar 

  51. Lacey, S., Kawamura, H., & Ohura, Y. (1998). Bearings for aircraft gas turbine engines-part 1. Motion & Control of NSK,5, 1–8.

    Google Scholar 

  52. Kaczor, J., & Raczynski, A. (2015). The effect of preload of angular contact ball bearings on durability of bearing system. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology,229(6), 723–732.

    Article  Google Scholar 

  53. Hagiu, G. D., & Gafitanu, M. D. (1997). Dynamic characteristics of high speed angular contact ball bearings. Wear,211(1), 22–29.

    Article  Google Scholar 

  54. Dong, Y., Zhou, Z., & Liu, M. (2017). Bearing preload optimization for machine tool spindle by the influencing multiple parameters on the bearing performance. Advances in Mechanical Engineering.,9(2), 1–9.

    Article  Google Scholar 

  55. Hagiu, G. D. (2003). Reliable high speed spindles by optimum bearings preload. International Journal of Applied Mechanics and Engineering,8(1), 57–70.

    Google Scholar 

  56. Jiang, S., & Mao, H. (2010). Investigation of variable optimum preload for a machine tool spindle. International Journal of Machine Tools and Manufacture,50(1), 19–28.

    Article  Google Scholar 

  57. Zhang, J., Wu, Y. H., & Zhang, L. X. (2015). Based on the bearing pre-tightening force analysis on characteristics of the ceramic electric spindle. Modular Machine Tool & Automatic Manufacturing Technique,1, 49–53.

    Google Scholar 

  58. Qiu, H. F. (2014). Study of dynamic characteristics for high-speed ceramic motorized spindle. Manufacturing Technology & Machine Tool,12, 101–106.

    Google Scholar 

  59. Guo, M., Chen, Z. N., & Wang, Q. J. (2001). Control of preload of bearing on precision machine tool. Chinese Journal of Engineering Design,2, 85–87.

    Google Scholar 

  60. Tsuneyoshi, T. (2007). Spindle preload measurement and analysis. In Proceedings of the 2007 ASPE summer topical meeting, PA, USA, 11–12 June (pp. 35–38). State College: ASPE.

  61. Mannan, M. A., & Stone, B. J. (1998). The use of vibration measurements for quality control of machine tool spindles. International Journal of Advanced Manufacturing Technology,14(12), 889–893.

    Article  Google Scholar 

  62. Deng, S. E., Wang, Y. S., & Li, X. N. (2010). Experimental study on the relationship between bearing preload and system natural frequency. Journal of Aerospace Power.,8, 1883–1887.

    Google Scholar 

  63. Walford, T. L. H., & Stone, B. J. (1980). The measurement of the radial stiffness of rolling element bearings under oscillating conditions. ARCHIVE Journal of Mechanical Engineering Science,22(4), 175–181.

    Article  Google Scholar 

  64. Hu, P. H., Hu, Y., & Dang, X. M. (2014). Multi-parameter measuring instrument for precise angular contact rolling bearing. Optics and Precision Engineering,22(11), 3038–3043.

    Article  Google Scholar 

  65. Spiewak, S. A., & Nickel, T. (2001). Vibration based preload estimation in machine tool spindles. International Journal of Machine Tools and Manufacture,41(4), 567–588.

    Article  Google Scholar 

  66. Tu, J. F., & Stein, J. L. (1995). On-line preload monitoring for anti-friction spindle beatings of high-speed machine tools. Journal of Dynamic Systems, Measurement, and Control,117(1), 43–53.

    Article  Google Scholar 

  67. Li, S. H., & Jia, C. Y. (2015). The research of spindle unit controllable preload based on piezoelectric ceramic. Modular Machine Tool & Automatic Manufacturing Technique,8, 28–31.

    Google Scholar 

  68. Turek, P., Skoczynski, W., & Stembalski, M. (2016). Comparison of methods for adjusting and controlling the preload of angular-contact bearings. Journal of Machine Engineering,16, 71–85.

    Google Scholar 

  69. Chang, C. F., & Chen, J. J. (2009). Vibration monitoring of motorized spindles using spectral analysis techniques. Mechatronics,19(5), 726–734.

    Article  Google Scholar 

  70. Cao, H., Holkup, T., Chen, X., & He, Z. (2012). Study on characteristic variations of high-speed spindles induced by centrifugal expansion deformations. Journal of Vibroengineering,14(3), 1278–1291.

    Google Scholar 

  71. Günther, P., Dreier, F., Pfister, T., Czarske, J., Haupt, T., & Hufenbach, W. (2011). Measurement of radial expansion and tumbling motion of a high-speed rotor using an optical sensor system. Mechanical Systems and Signal Processing,25(1), 319–330.

    Article  Google Scholar 

  72. Czarske, J., Günther, P., Dreier, F., Pfister, T., Haupt, T., & Hufenbach, W. (2012). Radial expansion measurements of a high-speed rotor using an interferometric array sensor. In Optical measurement systems for industrial inspection VII (Vol. 8082, p. 80820Z). International Society for Optics and Photonics.

  73. Takabi, J., & Khonsari, M. M. (2013). Experimental testing and thermal analysis of ball bearings. Tribology International,60, 93–103.

    Article  Google Scholar 

  74. Mushardt, H., & Jiang, C. (1984). Tempera turan und Warmedehung an Abrich tspindeln. Jah rbuch: Sehleifen Ho nen Lappenund Polieren, Essen.

    Google Scholar 

  75. Nakazaki, I. (1998). Possibility of high-speed machine tool. Mechanical technology, 36(11), 10–15.

    Google Scholar 

  76. Jiang, C. (1988). On-line measurement and control of preload force of spindle bearing and its influence on the characteristics of spindle system (part 1). Modular Machine Tool & Automatic Manufacturing Technique,2, 34–39.

    Google Scholar 

  77. ESA. Active variable preload bearings. Retrieved November 9, 2016 from http://www.esa-tec.eu/workspace/assets/files/1345714104_1365-51ccafd660431.p-df.

  78. Hu, G., Zhang, D., Gao, W., Chen, Y., Liu, T., & Tian, Y. (2018). Study on variable pressure/position preload spindle-bearing system by using piezoelectric actuators under close-loop control. International Journal of Machine Tools and Manufacture,125, 68–88.

    Article  Google Scholar 

  79. Bossmanns, B., & Tu, J. F. (1999). A thermal model for high speed motorized spindles. International Journal of Machine Tools and Manufacture,39(9), 1345–1366.

    Article  Google Scholar 

  80. Fujii, K., Shimizu, S., & Mori, M. (2001). Preload control technology of rolling bearings for machine tool spindles. Journal-Japan Society for Precision Engineering,67(3), 418–422.

    Article  Google Scholar 

  81. Jiang, S. Y. (2006). Intelligent control of high speed machining spindle with controllable preload. Patent application, CN-1846911, China.

  82. Zverev, I. A., Eun, I. U., Hwang, Y. K., Chung, W. J., & Lee, C. M. (2006). An elastic deformation model of high-speed spindle units. International Journal of Precision Engineering and Manufacturing,7(3), 39–46.

    Google Scholar 

  83. Cao, Y., & Altintas, Y. (2004). A general method for the modeling of spindle-bearing systems. Journal of Mechanical Design,126, 557–566.

    Article  Google Scholar 

  84. Hwang, Y. K., & Lee, C. M. (2010). Development of a newly structured variable preload control device for a spindle rolling bearing by using an electromagnet. International Journal of Machine Tools and Manufacture,50(3), 253–259.

    Article  Google Scholar 

  85. Song, C. K., & Shin, Y. J. (2002). Effect of preload on running accuracy of high speed spindle. Transactions of the Korean Society of Machine Tool Engineers,11(2), 65–70.

    Google Scholar 

  86. Chen, Y., Zhao, X., Gao, W., Hu, G., Zhang, S., & Zhang, D. (2016). A new method for measuring the rotational accuracy of rolling element bearings. Review of Scientific Instruments,87(12), 125102.

    Article  Google Scholar 

  87. Hwang, Y. K., & Lee, C. M. (2009). Development of automatic variable preload device for spindle bearing by using centrifugal force. International Journal of Machine Tools and Manufacture,49(10), 781–787.

    Article  Google Scholar 

  88. Kim, D. H., & Lee, C. M. (2013). A study on the development of a new conceptual automatic variable preload system for a spindle bearing. The International Journal of Advanced Manufacturing Technology,65(5–8), 817–824.

    Article  Google Scholar 

  89. Kim, D. H., & Lee, C. M. (2017). Development of an automatic variable preload device using uniformly distributed eccentric mass for a high-speed spindle. International Journal of Precision Engineering and Manufacturing,18(10), 1419–1423.

    Article  Google Scholar 

  90. Razban, M., & Movahhedy, M. R. (2015). A speed-dependent variable preload system for high speed spindles. Precision Engineering,40, 182–188.

    Article  Google Scholar 

  91. Choi, C. H., Kim, D. H., & Lee, C. M. (2014). A study on the development of a deformable rubber variable preload device. International Journal of Precision Engineering and Manufacturing,15(12), 2685–2688.

    Article  Google Scholar 

  92. Choi, C. H., & Lee, C. M. (2012). A variable preload device using liquid pressure for machine tools spindles. International Journal of Precision Engineering and Manufacturing,13(6), 1009–1012.

    Article  Google Scholar 

  93. Nye, T. W. (1990). Active control of bearing preload using piezoelectric translators. Nasa,1, 259–271.

    Google Scholar 

  94. Hwang, Y. K., Park, I. H., Paik, K. S., & Lee, C. M. (2014). Development of a variable preload spindle by using an electromagnetic actuator. International Journal of Precision Engineering and Manufacturing,15(2), 201–207.

    Article  Google Scholar 

  95. Nagaya, K., Takeda, S., Tsukui, Y., & Kumaido, T. (1987). Active control method for passing through critical speeds of rotating shafts by changing stiffnesses of the supports with use of memory metals. Journal of Sound and Vibration,113(2), 307–315.

    Article  Google Scholar 

  96. Viderman, Z., & Porat, I. (1987). An optimal control method for passage of a flexible rotor through resonances. Journal of Dynamic Systems, Measurement, and Control,109(3), 216–223.

    Article  MATH  Google Scholar 

  97. Lees, A. W., Jana, S., Inman, D. J., & Cartmell, M. P. (2007). The control of bearing stiffness using shape memory. In Proceesings of the international symposium on stability control of rotating machinery (pp. 299–308).

  98. Adjustable preload based on shape memory actuators. Retrieved August 10, 2018 from https://www.presswerk-i40.de/content/dam/iwu/presswerk-i40/en/documents/M10_2016_HZ_Lagervorspannung%20auf%20Bais%20FGl-Aktorik_en.pdf.

  99. Chen, J. S., & Chen, K. W. (2005). Bearing load analysis and control of a motorized high speed spindle. International Journal of Machine Tools and Manufacture,45(12–13), 1487–1493.

    Article  Google Scholar 

  100. Tsutsui, S., Aoyama, T., & Inasaki, I. (1988). Development of a spindle system with an adjustable preload mechanism using a piezoelectric actuator. JSME International Journal. Series 3, Vibration, Control Engineering, Engineering for Industry,31(3), 593–597.

    Article  Google Scholar 

  101. Chen, J. S., & Hwang, Y. W. (2006). Centrifugal force induced dynamics of a motorized high-speed spindle. International Journal of Advanced Manufacturing Technology,30, 10–19.

    Article  Google Scholar 

  102. Ma, Y. C. (2012). Research on vibration active control of high-speed spindle using multilayer piezoelectric ceramic. Ph.D. thesis. Chongqing University, China.

  103. Chen, Z. N., & Dong, R. G. (1993). Research on a new-type bearing preload controller for precision machine tool spindles. China Mechanical Engineering,3(4), 55–59.

    Google Scholar 

  104. Hagiu, G., & Dragan, B. (2004). Feed-back preload systems for high speed rolling bearings assemblies. The Analysis of University Dunarea De Jos of Galati Fascicle,7, 43–47.

    Google Scholar 

  105. Yang, Q. D., Wang, K. S., Meng, L. X., & Zhao, H. L. (2008). Design method of automatic adjustment of bearing preload based on thermal characteristic of materials. Chinese Journal of Mechanical Engineering,44(9), 183–187.

    Article  Google Scholar 

  106. Li, X. H., Zhang, Y. F., Hong, J., Zhao, H., & Li, H. F. (2016). Experiment analysis of spindle performance with rolling bearing under non-uniform preload. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,230(17), 3135–3146.

    Google Scholar 

  107. Long, X., Meng, D., & Chai, Y. (2015). Effects of spindle speed-dependent dynamic characteristics of ball bearing and multi-modes on the stability of milling processes. Meccanica,50(12), 3119–3132.

    Article  MATH  Google Scholar 

  108. Li, J. D., Zhu, Y. S., Xiong, Q. Q., & Yan, K. (2014). Research on axial dynamic stiffness of fixed-pressure spindle. Journal of Xi’an Jiaotong University,48(10), 126–130.

    Google Scholar 

  109. Wang, B. M., Mei, X. S., Hu, C. B., & Mei, X. S. (2010). Analysis on dynamic characteristics of preloaded high-speed angular contact ball bearings. Bearing,5, 1–4.

    Google Scholar 

  110. Yi, D., Yang, Y., Zhuo, X., Liu, Z., Cai, L., & Zhao, Y. (2016). An improved dynamic model for angular contact ball bearings under constant preload. Journal of the Chinese Institute of Engineers,39(8), 900–906.

    Article  Google Scholar 

  111. Zhang, T., Chen, X., Jiaming, G. U., & Wang, Z. (2018). Influences of preload on the friction and wear properties of high-speed instrument angular contact ball bearings. Chinese Journal of Aeronautics,31(3), 597–607.

    Article  Google Scholar 

  112. Lacey, S. J., Wardle, F. P., & Poon, S. Y. (1983). High speed bearings for C. N. C. machine tool spindles. Chartered Mechanical Engineer,30, 51–56.

    Google Scholar 

  113. Huang, W. D., Gan, C. B., Yang, S. X., & Xu, L. H. (2017). Analysis on the stiffness of angular contact ball bearings and its effect on the critical speed of a high speed motorized spindle. Journal of Vibration and Shock,36(10), 19–25.

    Google Scholar 

  114. Rabréau, C., Noël, D., Le Loch, S., Ritou, M., & Furet, B. (2017). Phenomenological model of preloaded spindle behavior at high speed. The International Journal of Advanced Manufacturing Technology,90(9–12), 3643–3654.

    Article  Google Scholar 

  115. Cui, L. (2016). Dynamic characteristics analysis of high speed motorized spindle based on dynamic stiffness of rolling bearing with preload. Manufacturing Technology & Machine Tool,7, 74–78.

    Google Scholar 

  116. Yang, Y., Cai, L. G., Zhuo, X., Wang, Y. D., & Liu, Z. F. (2015). Theoretical research on whirl frequency of high-speed spindle with different preload methods. Journal of Beijing University of Technology,41(6), 809–815.

    Google Scholar 

  117. Alfares, M. A., & Elsharkawy, A. A. (2003). Effects of axial preloading of angular contact ball bearings on the dynamics of a grinding machine spindle system. Journal of Materials Processing Technology,136(1–3), 48–59.

    Article  Google Scholar 

  118. Bai, C., Zhang, H., & Xu, Q. (2008). Effects of axial preload of ball bearing on the nonlinear dynamic characteristics of a rotor-bearing system. Nonlinear Dynamics,53(3), 173.

    Article  MATH  Google Scholar 

  119. Matsubara, A., Sawamura, R., Asano, K., & Muraki, T. (2014). Non-contact measurement of dynamic stiffness of rotating spindle. Procedia Cirp,14, 484–487.

    Article  Google Scholar 

  120. Kim, J. D., Zverv, I., & Lee, K. B. (2010). Model of rotation accuracy of high-speed spindles on ball bearings. Engineering,2(7), 477–484.

    Article  Google Scholar 

  121. Kim, K., & Kim, S. S. (1989). Effect of preload on running accuracy of spindle. International Journal of Machine Tools and Manufacture,29(1), 99–105.

    Article  Google Scholar 

  122. Lim, T. C., & Singh, R. (1990). Vibration transmission through rolling element bearings, part I: Bearing stiffness formulation. Journal of Sound and Vibration,139(2), 179–199.

    Article  Google Scholar 

  123. Houpert, L. (1997). A uniform analytical approach for ball and roller bearings calculations. Journal of Tribology,119(4), 851–858.

    Article  Google Scholar 

  124. Noel, D., Ritou, M., Furet, B., & Le Loch, S. (2013). Complete analytical expression of the stiffness matrix of angular contact ball bearings. Journal of Tribology,135(4), 041101.

    Article  Google Scholar 

  125. Xiaohu, L., Huanfeng, L., Yanfei, Z., & Jun, H. (2016). Investigation of non-uniform preload on the static and rotational performances for spindle bearing system. International Journal of Machine Tools and Manufacture,106, 11–21.

    Article  Google Scholar 

  126. Wu, W., Hong, J., Li, Y., & Li, X. (2017). Investigation of non-uniform preload effect on stiffness behavior of angular contact ball bearings. Advances in Mechanical Engineering,9(3), 1687814017694118.

    Google Scholar 

  127. Li, X., Li, H., Hong, J., & Zhang, Y. (2016). Heat analysis of ball bearing under nonuniform preload based on five degrees of freedom quasi-static model. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology,230(6), 709–728.

    Article  Google Scholar 

  128. Li, H., & Shin, Y. C. (2004). Integrated dynamic thermo-mechanical modeling of high speed spindles, part 1: Model development. Journal of Manufacturing Science and Engineering,126(1), 148–158.

    Article  Google Scholar 

  129. Gao, S. H., Meng, G., & Long, X. H. (2010). Stability prediction in high-speed milling including the thermal preload effects of bearing. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering,224(1), 11–22.

    Article  Google Scholar 

  130. Cao, Y., & Altintas, Y. (2007). Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations. International Journal of Machine Tools and Manufacture,47(9), 1342–1350.

    Article  Google Scholar 

  131. Hung, J. P., Chang, Q. W., Wu, K. D., & Chen, Y. R. (2015). Machining stability of a milling machine with different preloaded spindle. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering,9(5), 894–897.

    Google Scholar 

  132. Ozturk, E., Kumar, U., Turner, S., & Schmitz, T. (2012). Investigation of spindle bearing preload on dynamics and stability limit in milling. CIRP Annals-Manufacturing Technology,61(1), 343–346.

    Article  Google Scholar 

  133. Movahhedy, M. R., & Mosaddegh, P. (2006). Prediction of chatter in high speed milling including gyroscopic effects. International Journal of Machine Tools and Manufacture,46(9), 996–1001.

    Article  Google Scholar 

  134. Gagnol, V., Bouzgarrou, B. C., Ray, P., & Barra, C. (2007). Model-based chatter stability prediction for high-speed spindles. International Journal of Machine Tools and Manufacture,47(7–8), 1176–1186.

    Article  Google Scholar 

  135. Schmitz, T. L., Ziegert, J. C., & Stanislaus, C. (2004). A method for predicting chatter stability for systems with speed-dependent spindle dynamics. Transactions of the North American Manufacturing Research Institute of SME,32, 17–24.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by China Scholarship Council (No.: 201808320090) and Open Research Fund by Jiangsu Key Laboratory of Recycling and Reuse Technology for Mechanical and Electronic Products (RPME-KF1609).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Te Li.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Kolar, P., Li, XY. et al. Research Development of Preload Technology on Angular Contact Ball Bearing of High Speed Spindle: A Review. Int. J. Precis. Eng. Manuf. 21, 1163–1185 (2020). https://doi.org/10.1007/s12541-019-00289-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00289-5

Keywords

Navigation