Skip to main content
Log in

Quantitative Evaluation of Partial Delamination in Thermal Barrier Coatings Using Ultrasonic C-scan Imaging

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Adoption of thermal barrier coatings (TBC) will help to improve the durability and thermal efficiency of turbine engines. Delamination of TBC owing to thermally grown metal oxides is a critical issue that needs periodical evaluation to ensure safety and effective maintenance for the financial benefits of industry. In this paper, a methodical approach using ultrasonic C-scan technique for quantitative evaluation of partial delamination area in TBC specimens was investigated. Preliminary studies were conducted using acoustic simulations and the experiments were carried out on a set of coin shaped TBC specimens prepared using plasma spray technique and isothermally degraded at 1100 °C for 25 h, 50 h, 100 h, and 150 h. Ultrasonic C-scans were performed using pulse echo technique with incident ultra sound radiation inclined normal to the surface of base metal of TBC system. Delamination maps of respective specimens were formulated from ultrasonic signals through proper signal processing and analysis techniques and the degree of delamination was evaluated with the help of existed mathematical model. The simulation results shows good agreement with the experimental data and this approach shows ability to estimate the degree of delamination from base metal surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lepeshkin, A. (2012). Investigations of thermal barrier coatings for turbine parts. Ceramic Coatings: Applications in Engineering. https://doi.org/10.5772/31354.

    Article  Google Scholar 

  2. Miller, R. (1987). Current status of thermal barrier coatings: an overview. Surface and Coatings Technology. https://doi.org/10.1016/0257-8972(87)90003-X.

    Article  Google Scholar 

  3. Kim, D. J., Shin, I. H., Koo, J. M., Seok, C. S., & Lee, T. W. (2010). Failure mechanisms of coin-type plasma-sprayed thermal barrier coatings with thermal fatigue. Surface and Coatings Technology. https://doi.org/10.1016/j.surfcoat.2010.08.130.

    Article  Google Scholar 

  4. Xu, R., Fan, X., & Wang, T. J. (2016). Mechanisms governing the interfacial delamination of thermal barrier coating system with double ceramic layers. Applied Surface Science. https://doi.org/10.1016/j.apsusc.2016.02.180.

    Article  Google Scholar 

  5. Kramera, S., Faulhaber, S., Chambers, M., Clarke, D. R., Levia, C. G., Hutchinson, J. W., et al. (2008). Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Materials Science and Engineering A. https://doi.org/10.1016/j.msea.2008.01.006.

    Article  Google Scholar 

  6. Madhwal, M., Jordanb, E. H., & Gella, M. (2004). Failure mechanisms of dense vertically-cracked thermal barrier coatings. Materials Science and Engineering A. https://doi.org/10.1016/j.msea.2004.05.061.

    Article  Google Scholar 

  7. Hutchinson, J., & Evans, A. (2002). On the delamination of thermal barrier coatings in a thermal gradient. Surface and Coatings Technology. https://doi.org/10.1016/S0257-8972(01)01451-7.

    Article  Google Scholar 

  8. Evans, A. G., Mumm, D. R., & Hutchinson, J. W. (2001). Mechanisms controlling the durability of thermal barrier coatings. Progress in Materials Science. https://doi.org/10.1016/S0079-6425(00)00020-7.

    Article  Google Scholar 

  9. Bumgardner, C., Croom, B., & Li, X. (2017). High temperature delamination mechanisms of thermal barrier coatings: In-situ digital image correlation and finite element analyses. Acta Materialia. https://doi.org/10.1016/j.actamat.2017.01.061.

    Article  Google Scholar 

  10. Zhang, J., & Desai, V. (2005). Evaluation of thickness, porosity and pore shape of plasma sprayed TBC by electrochemical impedance spectroscopy. Surface and Coating Technology. https://doi.org/10.1016/j.surfcoat.2004.06.019.

    Article  Google Scholar 

  11. Zhou, M., Yao, W. B., Yang, X. S., Peng, Z. B., Li, K. K., Dai, C. Y., et al. (2014). In-situ and real-time tests on the damage evolution and fracture of thermal barrier coatings under tension: A coupled acoustic emission and digital image correlation method. Surface and Coatings Technology. https://doi.org/10.1016/j.surfcoat.2013.12.010.

    Article  Google Scholar 

  12. Fan, X., Xu, R., & Wang, T. J. (2014). Wang Interfacial delamination of double-ceramic-layer thermal barrier coating system. Ceramics International. https://doi.org/10.1016/j.ceramint.2014.05.095.

    Article  Google Scholar 

  13. Li, Y., Chen, Z., Mao, Y., & Qi, Y. (2012). Quantitative evaluation of thermal barrier coating based on eddy current technique. NDT&E International. https://doi.org/10.1016/j.ndteint.2012.04.006.

    Article  Google Scholar 

  14. Fahr, B. Rogé, & Thornton, J. (2006). Detection of thermally grown oxides in thermal barrier coatings by nondestructive evaluation. Journal of Thermal Spray Technology. https://doi.org/10.1361/105996306X92587.

    Article  Google Scholar 

  15. He, Y., et al. (2014). An investigation into eddy current pulsed thermography for detection of corrosion blister. Corrosion Science. https://doi.org/10.1016/j.corsci.2013.09.001.

    Article  Google Scholar 

  16. Zhang, D., Yating, Yu., et al. (2016). Thickness measurement of multilayer conductive coatings using multi frequency eddy current techniques. Nondestructive Testing and Evaluation. https://doi.org/10.1080/10589759.2015.1081903.

    Article  Google Scholar 

  17. Jayaraj, B., Desai, V. H., Lee, C. K., & Sohn, Y. H. (2004). Electrochemical impedance spectroscopy of porous ZrO2–8 wt% Y2O3 and thermally grown oxide on nickel aluminide. Materials Science and Engineering A. https://doi.org/10.1016/j.msea.2004.01.005.

    Article  Google Scholar 

  18. Jing, W., Guon, H., Abbas, M., & Gong, S. (2012). Evaluation of plasma sprayed YSZ thermal barrier coatings with the CMAS deposits infiltration using impedance spectroscopy. Progress in Natural Science: Materials International. https://doi.org/10.1016/j.pnsc.2011.12.007.

    Article  Google Scholar 

  19. Yang, F., & Xiao, P. (2009). Nondestructive evaluation of thermal barrier coatings using impedance spectroscopy. International Journal of Applied Ceramic Technology. https://doi.org/10.1111/j.1744-7402.2008.02304.x.

    Article  Google Scholar 

  20. Song, S. H., & Xiao, P. (2003). An impedance spectroscopy study of high-temperature oxidation of thermal barrier coatings”. Materials Science and Engineering B. https://doi.org/10.1016/S0921-5107(02)00397-5.

    Article  Google Scholar 

  21. Harmsworth, P. D., & Stevens, R. (1992). Phase composition and properties of plasma-sprayed zirconia thermal barrier coatings. Journal of Materials Science. https://doi.org/10.1007/BF02403868.

    Article  Google Scholar 

  22. Knotek, O., Loffler, F., & Beele, W. (1993). Diffusion barrier design against rapid interdiffusion of MCrAlY and Ni-base material. Surface and Coatings Technology,61, 6–13.

    Article  Google Scholar 

  23. Koo, J. M., & Seok, C. S. (2004). Design technique for improving the durability of top coating for thermal barrier of gas turbine. Journal of Korean Society for Precision Engineering. https://doi.org/10.7736/KSPE.2014.31.1.15.

    Article  Google Scholar 

  24. Fukuchi, T., Ozeki, T., Okada, M., & Fujii, T. (2016). Nondestructive inspection of thermal barrier coating of gas turbine high temperature components. IEEJ Transactions on Electrical and Electronic Engineering. https://doi.org/10.1002/tee.22255.

    Article  Google Scholar 

  25. Kim, H. J., Song, S. J., & Schmerr, L. W. (2014). Modeling ultrasonic pulse echo signals from a flat-bottom hole in immersion testing using a multi-gaussian beam. Journal of Nondestructive Evaluation. https://doi.org/10.1023/B:JONE.0000045217.48147.f6.

    Article  Google Scholar 

  26. Doane, D. P., & Lori, E. S. (2011). Measuring skewness: A forgotten statistic? Journal of Statistics Education. https://doi.org/10.1080/10691898.2011.11889611.

    Article  Google Scholar 

  27. Brown, S. Measures of shape: Skewness and kurtosis. https://brownmath.com/stat/shape.htm#Kurtosis.

Download references

Acknowledgements

This subject is supported by Korea Ministry of Environment (MOE) as ‘Public Technology program (No. 2016000700003) based on Environmental policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishore, M.B., Lee, HG., Abera, A.G. et al. Quantitative Evaluation of Partial Delamination in Thermal Barrier Coatings Using Ultrasonic C-scan Imaging. Int. J. Precis. Eng. Manuf. 21, 157–165 (2020). https://doi.org/10.1007/s12541-019-00143-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00143-8

Keywords

Navigation