Skip to main content
Log in

Method to Determine the Thickness of the Carburized Layer of Pyrolysis Furnace Tubes Using Ultrasound Technique

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Carburization that takes place in HP steel tubes in pyrolysis furnaces coils is an undesirable event, as it negatively affects mechanical and resistance to corrosion properties. This has been an important factor for the study and development of non-destructive methodologies aiming at maintaining structural integrity. In this work, non-destructive testing using ultrasound was employed for specimen with varying carburization degrees, in order to characterize them. The results allowed for the development of a correlation between the thickness of the carburized layer and of the half height bandwidth of the backwall echo frequency spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Silveira, T.L., May, I.: Reformer furnaces: materials, damage mechanisms and assessment. Arab. J. Sci. Eng. Sect. B 31(2C), 99–119 (2006)

    Google Scholar 

  2. Silveira TF, Silveira TL, Almeida LH, Moreira MF (2002) Microestrutura de tubos de forno de pir´olise desativados após 91.000 h de operação resultados da metalografia ótica, in: 6a -Conferência Sobre Tecnologia de Equipamentos—COTEC Salvador, Brasil

  3. Silva, I.C., Rebello, J.M.A., Bruno, A.C., Jacques, P.J., Nysten, B., Dille, J.: Structural and magnetic characterization of a carburized cast austenitic steel. Scripta Mater. 59(9), 1010–1013 (2008). https://doi.org/10.1016/j.scriptamat.2008.07.015

    Article  Google Scholar 

  4. Guo, J., Cao, T., Cheng, C., Meng, X., Zhao, J.: The relationship between magnetism and microstructure of ethylene pyrolysis furnace tubes after a long-term service. Microsc. Microanal. 24(5), 478–487 (2018). https://doi.org/10.1017/S1431927618015180

    Article  Google Scholar 

  5. Shi, S., Lippold, J.C.: Microstructure evolution during service exposure of two cast, heat-resisting stainless steels—hp–nb modified and 20–32nb. Mater. Charact. 59(8), 1029–1040 (2008). https://doi.org/10.1016/j.matchar.2007.08.029

    Article  Google Scholar 

  6. Petkovic-Luton, R., Ramanarayanan, T.A.: Mixed-oxidant attack of hightemperature alloys in carbon-and oxygen-containing environments. Oxid. Met. 34(5–6), 381–400 (1990). https://doi.org/10.1007/BF00664423.13

    Article  Google Scholar 

  7. Chun, C.M., Desai, S., Hershkowitz, F., Ramanarayanan, T.A.: Materials challenges in cyclic carburizing and oxidizing environments for petrochemical applications. Mater. Corros. 65(3), 282–295 (2014). https://doi.org/10.1002/maco.201307059

    Article  Google Scholar 

  8. Shen, L.M., Gong, J.M., Liu, H.S.: Carburisation layer evolution of fe–cr–ni alloy in furnace after long term service: experimental study and numerical prediction. Mater. High Temp. 31(2), 148–154 (2014). https://doi.org/10.1179/1878641313Y.0000000002

    Article  Google Scholar 

  9. Lian, X., Chen, X., Chen, T., Ye, J., Sun, J.: Carburization analysis of ethylene pyrolysis furnace tubes after service. Proc. Eng. 130, 685–692 (2015). https://doi.org/10.1016/j.proeng.2015.12.298

    Article  Google Scholar 

  10. Majumdar, A.K., Blanckenhagen, P.V.: Magnetic phase diagram of Fe80–xNixCr20 (10 ≤ x ≤ 30) alloys. Phys. Rev. B 29(7), 4079 (1984). https://doi.org/10.1103/PhysRevB.29.4079

    Article  Google Scholar 

  11. Stevens, K.J., Parbhu, A., Soltis, J., Stewart, D.: Magnetic force microscopy of a carburized ethylene pyrolysis tube. J. Phys. D Appl. Phys. 36(2), 164–168 (2002). https://doi.org/10.1088/0022-3727/36/2/315

    Article  Google Scholar 

  12. Li, T.F.: High temperature oxidation and hot corrosion of metals. Chemical Industry Press, Beijing (2003)

    Google Scholar 

  13. Khodamorad, S.H., Haghshenas, D.F.: Inspection of carburization and ovalness in ethylene cracking tubes by using a semi-robot. Eng. Fail. Anal. 25, 81–88 (2012). https://doi.org/10.1016/j.engfailanal.2012.04.006

    Article  Google Scholar 

  14. McLeod, A.C., Bishop, C.M., Stevens, K.J., Kral, M.V.: Microstructure and carburization detection in hp alloy pyrolysis tubes. Metall. Microstruct. Anal. 4(4), 273–285 (2015). https://doi.org/10.1007/s13632-015-0210-8

    Article  Google Scholar 

  15. Silva, I.C., Silva, R.S., Rebello, J.M.A., Bruno, A.C., Silveira, T.F.: Characterization of carburization of hp steels by non destructive magnetic testing. NDT E Int. 39(7), 569–577 (2006). https://doi.org/10.1016/j.ndteint.2006,03(004)

    Article  Google Scholar 

  16. Silva, I.C., Silva, L.L., Silva, R.S., Rebello, J.M.A., Bruno, A.C.: Carburization of ethylene pyrolysis tubes determined by magnetic measurements and genetic algorithm. Scr. Mater. 56(4), 317–320 (2007). https://doi.org/10.1016/j.scriptamat.2006.09.004

    Article  Google Scholar 

  17. Kasai, N., Ogawa, S., Oikawa, T., Sekine, K., Hasegawa, K.: Detection of carburization in ethylene pyrolysis furnace tubes by a C core probe with magnetization. J. Nondestr. Eval. 29(3), 175–180 (2010). https://doi.org/10.1007/s10921-010-0075-3

    Article  Google Scholar 

  18. Kumar, A., Jayakumar, T., Raj, B.: Ultrasonic spectral analysis for microstructural characterization of austenitic and ferritic steels. Philos. Mag. A 80(11), 2469–2487 (2000). https://doi.org/10.1080/01418610008216486

    Article  Google Scholar 

  19. Carmo CBF, Rodrigues LFM, Cruz FDC, Filho EFS, Albuquerque MC, da Silva IC, Farias CT (2016) Support vector machines applied to the identification of carburized hp steels using ultrasonic nondestructive testing. In: 19th World Conference on Nondestructive Testing, Munich

  20. Rodrigues, L.F., Cruz, F.C., Oliveira, M.A., Filho, E.F.S., Albuquerque, M.C., Silva, I.C., Farias, C.T.: Carburization level identification in industrial hp pipes using ultrasonic evaluation and machine learning. Ultrasonics 94, 145–151 (2019). https://doi.org/10.1016/j.ultras.2018.10.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ygor T. B. Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, Y.T.B., Coelho, R.E., da Silva, I.C. et al. Method to Determine the Thickness of the Carburized Layer of Pyrolysis Furnace Tubes Using Ultrasound Technique. J Nondestruct Eval 39, 3 (2020). https://doi.org/10.1007/s10921-019-0646-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-019-0646-x

Keywords

Navigation