Skip to main content

Detection of Debonding Defects in Thermal Barrier Coatings by Long Pulse and Vibro-Thermography

  • Conference paper
  • First Online:
Intelligent Systems in Production Engineering and Maintenance III (ISPEM 2023)

Abstract

Thermal barrier coatings (TBCs) are widely used in turbine blade for protection of superalloy substrate. Interfacial debonding will lead to serious safety accidents of aircrafts and should be detected in advance. Vibrothermography (VT) and long pulse thermography (LPT) are two kinds of effective non-destructive techniques. In this paper, the two methods were used for defect detection in TBCs. Artificial debonding defects with diameter from 5 mm to 2 mm were fabricated. The results show that both VT and LPT can be successfully used to identify defects with diameter larger than 2 mm. The thermal contrast of the two methods reduces with the decreasing size of debonding defect, and there is a higher thermal contrast in VT than that in LPT, when a proper ultrasonic excitation frequency is selected in VT. Measurement accuracy is investigated by comparing the defect area, which shows that the average value of the relative error is reasonable except for defects with small size. The lateral thermal diffusion effect and imperfect manufacturing process of artificial debonding may be the main causes for the relative error. In addition, parameters of each method should be optimized for better defect detection in TBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Padture, N.P., Gell, M., Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2002). https://doi.org/10.1126/science.1068609

    Article  Google Scholar 

  2. Cernuschi, F., Bison, P.: Thirty Years of thermal barrier coatings (TBC), photothermal and thermographic techniques: best practices and lessons learned. J. Therm. Spray Technol. https://doi.org/10.1007/s11666-022-01344-w

  3. Zhu, J., et al.: Progress and trends in non-destructive testing for thermal barrier coatings based on infrared thermography: a review. J. Nondestruct. Eval. 41, 49 (2022). https://doi.org/10.1007/s10921-022-00880-3

    Article  Google Scholar 

  4. Jiao, D.-C., Liu, Z.-W., Zhu, W.-Y., Xie, H.-M.: Exact localization of debonding defects in thermal barrier coatings. AIAA J. 56, 3691–3700 (2018). https://doi.org/10.2514/1.J056806

    Article  Google Scholar 

  5. Zheng, X., Chen, H., Ma, Z.: Shakedown boundaries of multilayered thermal barrier systems considering interface imperfections. Int. J. Mech. Sci. 144, 33–40 (2018). https://doi.org/10.1016/j.ijmecsci.2018.05.016

    Article  Google Scholar 

  6. Liu, Z., Jiao, D., Shi, W., Xie, H.: Linear laser fast scanning thermography NDT for artificial disbond defects in thermal barrier coatings. Opt. Express 25, 31789–31800 (2017). https://doi.org/10.1364/OE.25.031789

    Article  Google Scholar 

  7. Quattrocchi, A., Freni, F., Montanini, R.: Comparison between air-coupled ultrasonic testing and active thermography for defect identification in composite materials. Nondestruct. Test. Eval. 36, 97–112 (2021). https://doi.org/10.1080/10589759.2019.1699084

    Article  Google Scholar 

  8. Hedayatrasa, S., Segers, J., Poelman, G., Verboven, E., Van Paepegem, W., Kersemans, M.: Vibrothermographic spectroscopy with thermal latency compensation for effective identification of local defect resonance frequencies of a CFRP with BVID. NDT E Int. 109, 102179 (2020). https://doi.org/10.1016/j.ndteint.2019.102179

    Article  Google Scholar 

  9. Yong, L., Chen, Z., Mao, Y., Yong, Q.: Quantitative evaluation of thermal barrier coating based on eddy current technique. NDT E Int. 50, 29–35 (2012). https://doi.org/10.1016/j.ndteint.2012.04.006

    Article  Google Scholar 

  10. Arai, Y., Inoue, R.: Detection of small delamination in mullite/Si/SiC model EBC system by pulse thermography. J. Adv. Ceram. 8, 438–447 (2019). https://doi.org/10.1007/s40145-019-0327-3

    Article  Google Scholar 

  11. Doshvarpassand, S., Wu, C., Wang, X.: An overview of corrosion defect characterization using active infrared thermography. Infrared Phys. Technol. 96, 366–389 (2019). https://doi.org/10.1016/j.infrared.2018.12.006

    Article  Google Scholar 

  12. Zhuo, L., Yang, X., Zhu, J., Huang, Z., Chao, J., Xie, W.: Size determination of interior defects by reconstruction of subsurface virtual heat flux for step heating thermography. NDT E Int. 133, 102734 (2023). https://doi.org/10.1016/j.ndteint.2022.102734

    Article  Google Scholar 

  13. Huang, Z., et al.: Non-destructive evaluation of uneven coating thickness based on active long pulse thermography. NDT E Int. 130, 102672 (2022). https://doi.org/10.1016/j.ndteint.2022.102672

    Article  Google Scholar 

  14. Dong, L., et al.: Effects of crack surface roughness on crack heat generation characteristics of ultrasonic infrared thermography. Infrared Phys. Technol. 106, 103262 (2020). https://doi.org/10.1016/j.infrared.2020.103262

    Article  Google Scholar 

  15. Pech-May, N.W., Oleaga, A., Mendioroz, A., Omella, A.J., Celorrio, R., Salazar, A.: Vertical cracks characterization using lock-in thermography: I infinite cracks. Meas. Sci. Technol. 25, 115601 (2014). https://doi.org/10.1088/0957-0233/25/11/115601

    Article  Google Scholar 

  16. Wei, Q., et al.: Experimental and numerical investigation on detection fatigue crack in metallic plate by vibro-thermography. Infrared Phys. Technol. 126, 104347 (2022). https://doi.org/10.1016/j.infrared.2022.104347

    Article  Google Scholar 

  17. Ibarra-Castanedo, C., Genest, M., Piau, J.-M., Guibert, S., Bendada, A., Maldague, X.P.V.: Active infrared thermography techniques for the nondestructive testing of materials. In: Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization, pp. 325–348. World Scientific (2007)

    Google Scholar 

  18. Sun, J.G., Benz, J.: Flash duration effect in one-sided thermal imaging. AIP Conf. Proc. 760, 650–654 (2005). https://doi.org/10.1063/1.1916737

    Article  Google Scholar 

  19. Sun, J.G., Kulkarni, A., Fry, A.T.: Pulsed thermal imaging for non-destructive evaluation of hot gas path coatings in gas turbines. Mater. High Temp. 1–15 (2020). https://doi.org/10.1080/09603409.2020.1824853

  20. Bu, C., Liu, G., Zhang, X., Tang, Q.: Debonding defects detection of FMLs based on long pulsed infrared thermography technique. Infrared Phys. Technol. 104, 103074 (2020). https://doi.org/10.1016/j.infrared.2019.103074

    Article  Google Scholar 

  21. Almond, D.P., Angioni, S.L., Pickering, S.G.: Long pulse excitation thermographic non-destructive evaluation. NDT E Int. 87, 7–14 (2017). https://doi.org/10.1016/j.ndteint.2017.01.003

    Article  Google Scholar 

  22. Mabrouki, F., Thomas, M., Genest, M., Fahr, A.: Frictional heating model for efficient use of vibrothermography. NDT E Int. 42, 345–352 (2009). https://doi.org/10.1016/j.ndteint.2009.01.012

    Article  Google Scholar 

  23. Solodov, I., Bai, J., Bekgulyan, S., Busse, G.: A local defect resonance to enhance wave-defect interaction in nonlinear spectroscopy and ultrasonic thermography (2012)

    Google Scholar 

  24. Segers, J., Kersemans, M., Hedayatrasa, S., Calderon, J., Van Paepegem, W.: Towards in-plane local defect resonance for non-destructive testing of polymers and composites. NDT E Int. 98, 130–133 (2018). https://doi.org/10.1016/j.ndteint.2018.05.007

    Article  Google Scholar 

  25. Fernandes, H., Zhang, H., Figueiredo, A., Ibarra-Castanedo, C., Guimarares, G., Maldague, X.: Carbon fiber composites inspection and defect characterization using active infrared thermography: numerical simulations and experimental results. Appl. Opt. 55, D46–D53 (2016). https://doi.org/10.1364/AO.55.000D46

    Article  Google Scholar 

  26. Katunin, A., Wronkowicz-Katunin, A., Wachla, D.: Impact damage assessment in polymer matrix composites using self-heating based vibrothermography. Compos. Struct. 214, 214–226 (2019). https://doi.org/10.1016/j.compstruct.2019.02.003

    Article  Google Scholar 

  27. Xu, C., Xie, J., Huang, W., Chen, G., Gong, X.: Improving defect visibility in square pulse thermography of metallic components using correlation analysis. Mech. Syst. Signal Process. 103, 162–173 (2018). https://doi.org/10.1016/j.ymssp.2017.09.030

    Article  Google Scholar 

  28. Wei, Y., Zhang, S., Luo, Y., Ding, L., Zhang, D.: Accurate depth determination of defects in composite materials using pulsed thermography. Compos. Struct. 267, 113846 (2021). https://doi.org/10.1016/j.compstruct.2021.113846

    Article  Google Scholar 

  29. Park, H., Choi, M., Park, J., Kim, W.: A study on detection of micro-cracks in the dissimilar metal weld through ultrasound infrared thermography. Infrared Phys. Technol. 62, 124–131 (2014). https://doi.org/10.1016/j.infrared.2013.10.006

    Article  Google Scholar 

  30. Busse, G., Wu, D., Karpen, W.: Thermal wave imaging with phase sensitive modulated thermography. J. Appl. Phys. 71, 3962–3965 (1992). https://doi.org/10.1063/1.351366

    Article  Google Scholar 

  31. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  32. Ptaszek, G., Cawley, P., Almond, D., Pickering, S.: Artificial disbonds for calibration of transient thermography inspection of thermal barrier coating systems. NDT E Int. 45, 71–78 (2012). https://doi.org/10.1016/j.ndteint.2011.09.008

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (Grant No. 11972014), the Natural Youth Science Foundation of Jiangsu Province (Grant No. BK20210740) and the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (JCKYS2020603C014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C., Zhuo, L., Zhu, J. (2024). Detection of Debonding Defects in Thermal Barrier Coatings by Long Pulse and Vibro-Thermography. In: Burduk, A., Batako, A.D.L., Machado, J., Wyczółkowski, R., Dostatni, E., Rojek, I. (eds) Intelligent Systems in Production Engineering and Maintenance III. ISPEM 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-44282-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44282-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44281-0

  • Online ISBN: 978-3-031-44282-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics