Skip to main content
Log in

Ultra-precision 3 DOF tilting stage for workpiece setup of scalable micro-pattern machining

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Micro-machining has been widely used for manufacturing of micro molds for flat panel displays. Because the mold has a large area and heavy weight, the workpiece setup system with a high stiffness and ultraprecise positioning control is required to obtain a longterm manufacturing stability and precision. In this study, a novel ultra-precision tilting stage with 3-DOF motions (z-translation, pitch, and roll) has been developed to setup a heavy duty and large area workpiece. The structure is designed to realize a long motion range via an amplified guide mechanism of high stiffness flexure guide and the piezo-electric actuators are integrated to achieve the motion resolution of less than 100 nm. The guide mechanism has a large stiffness with long-term stability through the unique combination of a closed-lying bridge and a half-standing bridge, which can amplify the motion rage double and minimize the overall volume of tilting system. The static, dynamic, and thermal characteristic of the system was optimized by structural analysis using finite element modeling. Finally, the tilting stage provides 50 nm positioning repeatability for a workpiece of 150 kg within a vertical stroke of 160 μm and a machining area of 400×400 mm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

F L :

Workpiece load to upper guide

F w :

Workpiece load to lower quide

F k :

Actuating force of the piezo actuator

M o :

Moment of mount

L a , L b , L c :

Length of each guide

References

  1. Elfizy, A. T., Bone, G. M., and Elbestawi, M. A., “Design and Control of a Dual-Stage Feed Drive,” International Journal of Machine Tools and Manufacture, Vol. 45, No. 2, pp. 153–165, 2005.

    Article  Google Scholar 

  2. Gao, P., Swei, S.-M., and Yuan, Z., “A New Piezodriven Precision Micropositioning Stage Utilizing Flexure Hinges,” Nanotechnology, Vol. 10, No. 4, pp. 394–398, 1999.

    Article  Google Scholar 

  3. Kim, K.-H., Choi, Y.-M., Gweon, D.-G., Hong, D.-P., Kim, K.-S., Lee, S.-W., and Lee, M.-G., “Design of Decoupled Dual Servo Stage with Voice Coil Motor and Linear Motor for XY Long Stroke Ultra-Precision Scanning System,” Proc. of SPIE, Paper No. 60401C, 2005.

    Google Scholar 

  4. Liu, C.-H., Jywe, W.-Y., Jeng, Y.-R., Hsu, T.-H., and Li, Y.-t., “Design and Control of a Long-Traveling Nano-Positioning Stage,” Precision Engineering, Vol. 34, No. 3, pp. 497–506, 2010.

    Article  Google Scholar 

  5. Yoo, D.-Y., Lee, S.-K., and Lee, D.-H., “Ultraprecision Machining-Based Micro-Hybrid Lens Design for Micro Scanning Devices,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 4, pp. 639–646, 2015.

    Article  Google Scholar 

  6. Ju, J., Lim, S., Seok, J., and Kim, S.-m., “A Method to Fabricate Low-Cost and Large Area Vitreous Carbon Mold for Glass Molded Microstructures,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 2, pp. 287–291, 2015.

    Article  Google Scholar 

  7. Duong, T.-H. and Kim, H.-C., “Deformation Analysis of Rectangular Channel Structures in Micro Pattern Machining,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 4, pp. 619–627, 2015.

    Article  Google Scholar 

  8. Chun, S.-H. and Ko, T. J., “Study on the Response Surface Model of Machining Error in Internal Lathe Boring,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 2, pp. 177–182, 2011.

    Article  Google Scholar 

  9. Heo, S., Lee, M., Kim, S. H., Lee, W., and Min, B.-K., “Compensation of Tool Deflection in Micromilling Using Workpiece Holder Control Device,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 6, pp. 1205–1208, 2015.

    Article  Google Scholar 

  10. Jeong, J.-h., Kim, M.-h., Woo, S., Gweon, D.-g., Ahn, D., and Hong, D., “Design of a Six-Degree-of-Freedom Motion Fine Stage Driven by Voice Coil Motors with Flexural Guides,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 1, pp. 203–207, 2015.

    Article  Google Scholar 

  11. Lee, D.-J., Lee, S.-K., and Kim, W.-S., “Precise Contour Motion of XY Stage Driven by Ultrasonic Linear Motors in a High Vacuum Environment,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 3, pp. 293–301, 2016.

    Article  Google Scholar 

  12. Chang, S. H., Tseng, C. K., and Chien, H. C., “An Ultra-Precision XYTheta(Z) Piezo-Micropositioner. II. Experiment and Performance,” IEEE Trans Ultrason Ferroelectr Freq Control Vol. 46, No. 4, pp. 906–912, 1999.

    Article  Google Scholar 

  13. Lee, S.-Q. and Gweon, D.-G., “A New 3-DOF Z-Tilts Micropositioning System Using Electromagnetic Actuators and Air Bearings,” Precision Engineering, Vol. 24, No. 1, pp. 24–31, 2000.

    Article  Google Scholar 

  14. Huang, S.-C. and Dao, T.-P., “Design and Computational Optimization of a Flexure-Based XY Positioning Platform Using FEA-Based Response Surface Methodology,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 8, pp. 1035–1048, 2016.

    Article  Google Scholar 

  15. Choi, K.-B., Lee, J. J., Kim, G. H., and Lim, H. J., “A Compliant Parallel Mechanism with Flexure-Based Joint Chains for Two Translations,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 9, pp. 1625–1632, 2012.

    Article  Google Scholar 

  16. Scire, F. E. and Teague, E. C., “Piezodriven 50-μm Range Stage with Subnanometer Resolution,” Review of Scientific Instruments, Vol. 49, No. 12, pp. 1735–1740, 1978.

    Article  Google Scholar 

  17. Juhas, L., Vujanić, A., Adamović, N., Nagy, L., and Borovac, B., “A Platform for Micropositioning Based on Piezo Legs,” Mechatronics, Vol. 11, No. 7, pp. 869–897, 2001.

    Article  Google Scholar 

  18. Nguyen, P.-B. and Choi, S.-B., “Micro-Position Control of a Piezostack Actuator Using Rate-Dependent Hysteretic Compensator,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 5, pp. 885–891, 2011.

    Article  Google Scholar 

  19. Jung, H. J. and Kim, J. H., “Novel Piezo Driven Motion Amplified Stage,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 10, pp. 2141–2147, 2014.

    Article  Google Scholar 

  20. Liu, P.-B., Yan, P., Zhang, Z., and Leng, T.-T., “Flexure-Hinges Guided Nano-Stage for Precision Manipulations: Design, Modeling and Control,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2245–2254, 2015.

    Article  Google Scholar 

  21. Witthauer, A., Kim, G.-Y., Faidley, L., Zou, Q., and Wang, Z., “Design and Characterization of a Flextensional Stage Based on Terfenol-D Actuator,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 1, pp. 135–141, 2014.

    Article  Google Scholar 

  22. Lu, T.-F., Handley, D. C., Kuan Yong, Y., and Eales, C., “A Three-DOF Compliant Micromotion Stage with Flexure Hinges,” Industrial Robot: An International Journal, Vol. 31, No. 4, pp. 355–361, 2004.

    Article  Google Scholar 

  23. Jouaneh, M. and Yang, R., “Modeling of Flexure-Hinge Type Lever Mechanisms,” Precision Engineering, Vol. 27, No. 4, pp. 407–418, 2003.

    Article  Google Scholar 

  24. Lobontiu, N., “Compliance-Based Matrix Method for Modeling the Quasi-Static Response of Planar Serial Flexure-Hinge Mechanisms,” Precision Engineering, Vol. 38, No. 3, pp. 639–650, 2014.

    Article  Google Scholar 

  25. Liu, Y. and Xu, Q., “Design of a Flexure-Based Auto-Focusing Device for a Microscope,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2271–2279, 2015.

    Article  Google Scholar 

  26. Park, D.-K., Lee, G.-I., Gao, J.-C., and Kim, J.-Y., “Research on the Design of the Ultra-High-Precision Positioning Control Error Compensation,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 10, pp. 1351–1358, 2016.

    Article  Google Scholar 

  27. Ryu, J. W., Lee, S.-Q., Gweon, D.-G., and Moon, K. S., “Inverse Kinematic Modeling of a Coupled Flexure Hinge Mechanism,” Mechatronics, Vol. 9, No. 6, pp. 657–674, 1999.

    Article  Google Scholar 

  28. Kim, J., Kim, S., and Kwak, Y., “Optimization of a Piezoelectric Actuator Using Bridge-Type Hinge Mechanism,” J. Korean Soc. Precis. Eng., Vol. 20, No. 2, pp. 168–175, 2003.

    Google Scholar 

  29. Kang, D., Kim, K., Kim, D., Shim, J., Gweon, D.-G., and Jeong, J., “Optimal Design of High Precision XY-Scanner with Nanometer-Level Resolution and Millimeter-Level Working Range,” Mechatronics, Vol. 19, No. 4, pp. 562–570, 2009.

    Article  Google Scholar 

  30. Woo, S. and Gweon, D.-G., “Design and Optimization of Long Stroke Planar Motion Maglev Stage Using Copper Strip Array,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 3, pp. 479–485, 2015.

    Article  Google Scholar 

  31. Li, T.-M., Zhang, J.-L., and Jiang, Y., “Derivation of Empirical Compliance Equations for Circular Flexure Hinge Considering the Effect of Stress Concentration,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 8, pp. 1735–1743, 2015.

    Article  Google Scholar 

  32. Ito, S., Cigarini, F., Unger, S., and Schitter, G., “Flexure Design for Precision Positioning Using Low-Stiffness Actuators,” IFACPapersOnLine, Vol. 49, No. 21, pp. 200–205, 2016.

    Google Scholar 

  33. Lee, S.-H., Kim, H.-C., and Jung, K.-S., “Atomic Force Microscopy Using Optical Pickup Head to Measure Cantilever Displacement,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 5, pp. 913–915, 2011.

    Article  Google Scholar 

  34. Jung, J.-k., Youm, W.-s., and Park, K.-h., “Vibration Reduction Control of a Voice Coil Motor (VCM) Nano Scanner,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 3, pp. 167–170, 2009.

    Article  Google Scholar 

  35. Pahk, H. J., Lee, D. S., and Park, J. H., “Ultra Precision Positioning System for Servo Motor-Piezo Actuator Using the Dual Servo Loop and Digital Filter Implementation,” International Journal of Machine Tools and Manufacture, Vol. 41, No. 1, pp. 51–63, 2001.

    Article  Google Scholar 

  36. Li, Y., Xiao, S., Xi, L., and Wu, Z., “Design, Modeling, Control and Experiment for a 2-DOF Compliant Micro-Motion Stage,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 4, pp. 735–744, 2014.

    Article  Google Scholar 

  37. Teo, T. J., Yang, G., and Chen, I.-M., “A Flexure-Based Electromagnetic Nanopositioning Actuator with Predictable and Re-Configurable Open-Loop Positioning Resolution,” Precision Engineering, Vol. 40, pp. 249–260, 2015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongseok Youn or Bongchul Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JS., Youn, H. & Kang, B. Ultra-precision 3 DOF tilting stage for workpiece setup of scalable micro-pattern machining. Int. J. Precis. Eng. Manuf. 18, 1103–1109 (2017). https://doi.org/10.1007/s12541-017-0129-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-017-0129-x

Keywords

Navigation