Skip to main content
Log in

A method to fabricate Low-Cost and large area vitreous carbon mold for glass molded microstructures

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

A method to fabricate a vitreous carbon (VC) mold for glass molded microstructures was investigated by replicating a microstructured furan precursor and carbonization process. The composition of a furan-based thermal curable polymer was optimized along with the processing parameters of thermal curing and carbonization processes to improve the surface quality of microcavities on the VC mold. The engineering feasibility of the proposed method was ensured by successfully molding glass micro-grating structures with a pitch of ~46.3 ÎĽm and a height of ~3.8 ÎĽm using the fabricated VC molds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang, S., “Replication Technology for Micro/Nano Optical Components,” Japanese Journal of Applied Physics, Vol. 43, No. 8S, pp. 5706–5716, 2004.

    Article  Google Scholar 

  2. Kim, S. M., Kim, H., and Kang, S., “Development of an Ultraviolet Imprinting Process for Integrating a Microlens Array onto an Image Sensor,” Optics Letters, Vol. 31, No. 18, pp. 2710–2712, 2006.

    Article  MathSciNet  Google Scholar 

  3. Kim, S. M., Zhang, W., and Cunningham, B. T., “Coupling Discrete Metal Nanoparticles to Photonic Crystal Surface Resonant Modes and Application to Raman Spectroscopy,” Optics Express, Vol. 18, No. 5, pp. 4300–4309, 2010.

    Article  Google Scholar 

  4. Jeong, H. E. and Suh, K. Y., “On the Role of Oxygen in Fabricating Microfluidic Channels with Ultraviolet Curable Materials,” Lab on a Chip, Vol. 8, No. 11, pp. 1787–1792, 2008.

    Article  Google Scholar 

  5. Jung, W., Ra, J., and Park, K., “Design Optimization of Ultrasonic Horn for Micro-Pattern Replication,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 12, pp. 2195–2201, 2012.

    Article  Google Scholar 

  6. Yoo, Y. E., Kim, T. H., Je, T. J., Choi, D. S., Kim, C. W., and Kim, S. K., “Injection Molding of Micro Patterned PMMA Plate,” Transactions of Nonferrous Metals Society of China, Vol. 21, No. pp. s148–s152, 2011.

    Article  Google Scholar 

  7. Nikumb, S., Chen, Q., Li, C., Reshef, H., Zheng, H., et al., “Precision Glass Machining, Drilling and Profile Cutting by Short Pulse Lasers,” Thin Solid Films, Vol. 477, No. 1, pp. 216–221, 2005.

    Article  Google Scholar 

  8. Parashar, V. K., Sayah, A., Pfeffer, M., Schoch, F., Gobrecht, J., and Gijs, M. A. M., “Nano-Replication of Diffractive Optical Elements in Sol–Gel Derived Glasses,” Microelectronic Engineering, Vol. 67, pp. 710–719, 2003.

    Article  Google Scholar 

  9. Yi, A. Y. and Jain, A., “Compression Molding of Aspherical Glass Lenses-A Combined Experimental and Numerical Analysis,” Journal of the American Ceramic Society, Vol. 88, No. 3, pp. 579–586, 2005.

    Article  Google Scholar 

  10. Suzuki, H., Higuchi, T., Nishioka, M., Kitajima, T., Yui, A., et al., “Precision Grinding of Micro Fresnel Shape and Precision Glass Molding of Micro Fresnel Lens,” Proc. of 16th Annual Meeting of the ASPE, pp. 437–440, 2001.

    Google Scholar 

  11. Huang, C. Y., Kuo, C. H., Hsiao, W. T., Huang, K. C., Tseng, S. F., and Chou, C. P., “Glass Biochip Fabrication by Laser Micromachining and Glass-Molding Process,” Journal of Materials Processing Technology, Vol. 212, No. 3, pp. 633–639, 2012.

    Article  Google Scholar 

  12. Schubert, A., Edelmann, J., and Burkhardt, T., “Micro Structuring of Borosilicate Glass by High-Temperature Micro-Forming,” Microsystem Technologies, Vol. 12, No. 8, pp. 790–795, 2006.

    Article  Google Scholar 

  13. Yan, J., Oowada, T., Zhou, T., and Kuriyagawa, T., “Precision Machining of Microstructures on Electroless-Plated Nip Surface for Molding Glass Components,” Journal of Materials Processing Technology, Vol. 209, No. 10, pp. 4802–4808, 2009.

    Article  Google Scholar 

  14. Yasui, M., Takahashi, M., Kaneko, S., Tsuchida, T., Hirabayashi, Y., et al., “Micro Press Molding of Borosilicate Glass using Plated Ni-W Molds,” Japanese Journal of Applied Physics, Vol. 46, No. 9S, pp. 6378–6381, 2007.

    Article  Google Scholar 

  15. Choi, W., Lee, J., Kim, W. B., Min, B. K., Kang, S., and Lee, S. J., “Design and Fabrication of Tungsten Carbide Mould with Micro Patterns Imprinted by Micro Lithography,” Journal of Micromechanics and Microengineering, Vol. 14, No. 11, pp. 1519–1525, 2004.

    Article  Google Scholar 

  16. Han, J., Min, B. K., and Kang, S., “Micro Forming of Glass Microlens Array using an Imprinted and Sintered Tungsten Carbide Micro Mold,” International Journal of Modern Physics B, Vol. 22, No. 31–32, pp. 6051–6056, 2008.

    Article  Google Scholar 

  17. Takahashi, M., Sugimoto, K., and Maeda, R., “Nanoimprint of Glass Materials with Glassy Carbon Molds Fabricated by Focused-Ion-Beam Etching,” Japanese Journal of Applied Physics, Vol. 44, No. 7S, pp. 5600–5605, 2005.

    Article  Google Scholar 

  18. Youn, S. W., Takahashi, M., Goto, H., and Maeda, R., “Fabrication of Micro-Mold for Glass Embossing using Focused Ion Beam, Femto-Second Laser, Eximer Laser and Dicing Techniques,” Journal of Materials Processing Technology, Vol. 187, pp. 326–330, 2007.

    Article  Google Scholar 

  19. Tseng, T. B., Chilukuri, A., Park, S. C., and Kwon, Y. J., “Automated Quality Characterization of 3D Printed Bone Scaffolds,” Journal of Computational Design and Engineering, Vol. 1, No. 3, pp. 194–201, 2014.

    Article  Google Scholar 

  20. Kim, H. U., Cha, D. H., Kim, H. J., and Kim, J. H., “Rhenium-Iridium Coating Effect of Tungsten Carbide Mold for Aspheric Glass Lens,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 3, pp. 19–23, 2009.

    Article  Google Scholar 

  21. Cowlard, F. and Lewis, J., “Vitreous Carbon-a New Form of Carbon,” Journal of Materials Science, Vol. 2, No. 6, pp. 507–512, 1967.

    Article  Google Scholar 

  22. Fitzer, E., Schaefer, W., and Yamada, S., “The Formation of Glasslike Carbon by Pyrolysis of Polyfurfuryl Alcohol and Phenolic Resin,” Carbon, Vol. 7, No. 6, pp. 643–648, 1969.

    Article  Google Scholar 

  23. Maleki, H., Holland, L. R., Jenkins, G. M., and Zimmerman, R. L., “Determining the Shortest Production Time for Glassy Carbon Ware,” Carbon, Vol. 35, No. 2, pp. 227–234, 1997.

    Article  Google Scholar 

  24. Wang, F., Chen, Y., Klocke, F., Pongs, G., and Allen, Y. Y., “Numerical Simulation Assisted Curve Compensation in Compression Molding of High Precision Aspherical Glass Lenses,” Journal of Manufacturing Science and Engineering, Vol. 131, No. 1, Paper No. 011014, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-min Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, J., Lim, S., Seok, J. et al. A method to fabricate Low-Cost and large area vitreous carbon mold for glass molded microstructures. Int. J. Precis. Eng. Manuf. 16, 287–291 (2015). https://doi.org/10.1007/s12541-015-0038-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-015-0038-9

Keywords

Navigation