Skip to main content
Log in

Reconstruction Mechanism of Surface Integrity for Laser Additive Manufactured 316 L Stainless Steel Subjected to Ultrasonic Surface Rolling Process: Numerical Simulation and Experimental Verification

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The ultrasonic surface rolling process (USRP) is a strengthening process to improve the surface properties and enhance the mechanical performances of metal materials based on severe plastic deformation and high strain rates. In this study, a three-dimensional numerical model was established to investigate the reconstruction mechanism of surface integrity for the laser additive manufactured 316 L stainless steel (LAMed 316 L) subjected to USRP. The accuracy of the USRP model was confirmed by experimental results of residual stress, microhardness, and surface roughness. The results showed that the static pressure played a crucial role in causing the plastic deformation and strain hardening, followed by the decreased surface roughness, improved microhardness, and induced compressive residual stresses. The introduction of ultrasonic high-frequency impact with the smaller force contributed to the high strain rate plastic deformation and the surface tensile stress release, and improved the plastic deformation efficiency greatly. The reconstructed surface integrity of LAMed 316 L was attributed to the plastic strain, strain hardening, and grain refinement.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. L. Bhandari, V. Gaur, Addit. Manuf. 60, 103227 (2022). https://doi.org/10.1016/j.addma.2022.103227

    Article  CAS  Google Scholar 

  2. H. Zhao, C. Zhao, W. Xie, D. Wu, B. Du, X. Zhang, M. Wen, R. Ma, R. Li, J. Jiao, C. Chang, X. Yan, L. Sheng, Mater. (Basel). 16, 3250 (2023). https://doi.org/10.3390/ma16083250

    Article  CAS  Google Scholar 

  3. A. Lanzutti, E. Marin, K. Tamura, T. Morita, M. Magnan, E. Vaglio, F. Andreatta, M. Sortino, G. Totis, L. Fedrizzi, Addit. Manuf. 34, 101258 (2020). https://doi.org/10.1016/j.addma.2020.101258

    Article  CAS  Google Scholar 

  4. M.J.K. Lodhi, K.M. Deen, M.C. Greenlee-Wacker, W. Haider, Addit. Manuf. 27, 8–19 (2019). https://doi.org/10.1016/j.addma.2019.02.005

    Article  CAS  Google Scholar 

  5. E. Liverani, S. Toschi, L. Ceschini, A. Fortunato, J. Mater. Process. Technol. 249, 255–263 (2017). https://doi.org/10.1016/j.jmatprotec.2017.05.042

    Article  CAS  Google Scholar 

  6. D. Wu, C. Yu, Q. Wang, F. Niu, G. Ma, H. Wang, C. Zhou, B. Zhang, J. Mater. Process. Technol. 307, 117695 (2022). https://doi.org/10.1016/j.jmatprotec.2022.117695

    Article  CAS  Google Scholar 

  7. W. Ouyang, Z. Xu, Y. Chao, Y. Liu, W. Luo, J. Jiao, L. Sheng, W. Zhang, Mater. Charact. 191, 112123 (2022). https://doi.org/10.1016/j.matchar.2022.112123

    Article  CAS  Google Scholar 

  8. Q. Xu, X. Yang, J. Liu, D. Jiang, Z. Qiu, Mater. Today Commun. 35, 105932 (2023). https://doi.org/10.1016/j.mtcomm.2023.105932

    Article  CAS  Google Scholar 

  9. D. Liu, D. Liu, M. Guagliano, X. Xu, K. Fan, S. Bagherifard, J. Mater. Sci. Technol. 61, 63–74 (2021). https://doi.org/10.1016/j.jmst.2020.05.047

    Article  CAS  Google Scholar 

  10. H. Wang, G. Song, G. Tang, Mater. Sci. Eng. A 662, 456–467 (2016). https://doi.org/10.1016/j.msea.2016.03.097

    Article  CAS  Google Scholar 

  11. J. Geng, Z. Yan, H. Zhang, Y. Liu, P. Dong, S. Yuan, W. Wang, Adv. Eng. Mater. 23, 2100076 (2021). https://doi.org/10.1002/adem.202100076

    Article  CAS  Google Scholar 

  12. Z. Liu, Z. Wang, C. Gao, X. Liu, R. Liu, Z. Xiao, J. Sanderson, Mater. Sci. Eng. A 833, 142352 (2022). https://doi.org/10.1016/j.msea.2021.142352

    Article  CAS  Google Scholar 

  13. J.W. Xie, S.Q. Zhang, Y.A. Sun, Y.X. Hao, B.F. An, Q.L. Li, C.A. Wang, Mater. Sci. Eng. A 795, 140004 (2020). https://doi.org/10.1016/j.msea.2020.140004

    Article  CAS  Google Scholar 

  14. Z. Liu, C. Gao, X. Liu, R. Liu, Z. Xiao, J. Mater. Process. Technol. 297, 117264 (2021). https://doi.org/10.1016/j.jmatprotec.2021.117264

    Article  CAS  Google Scholar 

  15. Y. Chen, T. Lu, X. Chen, B. Sun, N. Yao, K. Li, J. Qiu, X. Hu, X.-C. Zhang, S.-T. Tu, Addit. Manuf. 78, 103887 (2023). https://doi.org/10.1016/j.addma.2023.103887

    Article  CAS  Google Scholar 

  16. C. Ma, M.T. Andani, H. Qin, N.S. Moghaddam, H. Ibrahim, A. Jahadakbar, A. Amerinatanzi, Z. Ren, H. Zhang, G.L. Doll, Y. Dong, M. Elahinia, C. Ye, J. Mater. Process. Technol. 249, 433–440 (2017). https://doi.org/10.1016/j.jmatprotec.2017.06.038

    Article  CAS  Google Scholar 

  17. Q. Xu, D. Jiang, J. Zhou, Z. Qiu, X. Yang, Surf. Coat. Technol. 454, 129187 (2023). https://doi.org/10.1016/j.surfcoat.2022.129187

    Article  CAS  Google Scholar 

  18. J. Sun, Q. Sun, Y. Liu, B. Li, Z. Zhang, B. Xu, S. Xu, Y. Han, Y. Qiao, J. Han, G. Wu, P.K. Chu, J. Mater. Res. Technol. 20, 4378–4391 (2022). https://doi.org/10.1016/j.jmrt.2022.09.011

    Article  CAS  Google Scholar 

  19. Y. Liu, L. Wang, D. Wang, J. Mater. Process. Technol. 211, 2106–2113 (2011). https://doi.org/10.1016/j.jmatprotec.2011.07.009

    Article  CAS  Google Scholar 

  20. F. Li, B. Zhao, S. Lan, Z. Feng, J. Adv. Manuf. Technol. 106, 1893–1900 (2019). https://doi.org/10.1007/s00170-019-04648-4

    Article  Google Scholar 

  21. Z. Ren, Z. Li, S. Zhou, Y. Wang, L. Zhang, Z. Zhang, Simul. Model. Pract. Theory. 121, 102643 (2022). https://doi.org/10.1016/j.simpat.2022.102643

    Article  Google Scholar 

  22. Y. Li, Y. Ge, J. Lei, W. Bai, D. Sorgente, Adv. Mater. Sci. Eng. 2022, 2905843 (2022). https://doi.org/10.1155/2022/2905843

  23. Y. Liu, X. Zhao, D. Wang, Mater. Sci. Technol. 30, 627–636 (2013). https://doi.org/10.1179/1743284713y.0000000396

    Article  Google Scholar 

  24. Z. Wang, J. Gan, J. He, X. Wang, Y. Yang, M. Shi, X. Ren, Surf. Coat. Technol. 425, 127737 (2021). https://doi.org/10.1016/j.surfcoat.2021.127737

    Article  CAS  Google Scholar 

  25. D. Liu, D. Liu, X. Zhang, C. Liu, N. Ao, Mater. Sci. Eng. A 726, 69–81 (2018). https://doi.org/10.1016/j.msea.2018.04.033

    Article  CAS  Google Scholar 

  26. G.T. Gray, Annu. Rev. Mater. Res. 42, 285–303 (2012). https://doi.org/10.1146/annurev-matsci-070511-155034

    Article  CAS  Google Scholar 

  27. D.L. Foley, S.H. Huang, E. Anber, L. Shanahan, Y. Shen, A.C. Lang, C.M. Barr, D. Spearot, L. Lamberson, M.L. Taheri, Acta Mater. 200, 1–11 (2020). https://doi.org/10.1016/j.actamat.2020.08.047

    Article  CAS  Google Scholar 

  28. P. Lin, Y. Hao, B. Zhang, S. Zhang, J. Shen, Mater. Sci. Eng. A 710, 336–342 (2018). https://doi.org/10.1016/j.msea.2017.10.112

    Article  CAS  Google Scholar 

  29. Y. Meng, J. Deng, R. Wang, Q. Sun, Z. Zhang, J. Adv. Manuf. Technol. 125, 73–89 (2023). https://doi.org/10.1007/s00170-022-10631-3

    Article  Google Scholar 

  30. K. Dai, J. Villegas, Z. Stone, L. Shaw, Acta Mater. 52, 5771–5782 (2004). https://doi.org/10.1016/j.actamat.2004.08.031

    Article  CAS  Google Scholar 

  31. H. Ye, A. Chen, S. Liu, C. Zhang, Y. Gao, Q. Li, J. Lv, J. Chen, H. Guo, Surf. Coat. Technol. 433, 128126 (2022). https://doi.org/10.1016/j.surfcoat.2022.128126

    Article  CAS  Google Scholar 

  32. Q. Wei, J. Mater. Sci. 42, 1709–1727 (2007). https://doi.org/10.1007/s10853-006-0700-9

    Article  CAS  Google Scholar 

  33. Z. He, J. Yu, B. Cui, S. Zhao, Z. Liu, H. Yu, S. Ding, Trans. Indian Inst. Met. 75, 1113–1123 (2022). https://doi.org/10.1007/s12666-021-02508-y

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (No.52001048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhong Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Yang, X., Liu, J. et al. Reconstruction Mechanism of Surface Integrity for Laser Additive Manufactured 316 L Stainless Steel Subjected to Ultrasonic Surface Rolling Process: Numerical Simulation and Experimental Verification. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01683-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01683-z

Keywords

Navigation