Skip to main content
Log in

Hot Corrosion and Oxidation Behavior of Pt–Aluminide and Pt–Rh–Aluminide Coatings Applied on Nickle-Base and Cobalt-Base Substrates

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This case study compared the microstructure, hot corrosion, and isothermal oxidation behavior of two modified diffusion aluminide coatings on two substrates. The first coating was a platinum aluminide (Pt–aluminide) coating on a nickel-base Inconel 738LC alloy, while the second was a platinum–rhodium aluminide (Pt–Rh–aluminide) coating on a cobalt-base FSX-414 alloy. The coatings were created through electroplating with Pt and Rh, followed by diffusion heat treatment and above-pack aluminizing. Using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD), the substrate microstructure, coating morphology, and chemical composition were studied. The analysis revealed that both coatings consisted of a dual-phase, with PtAl2 + β-(Ni-Pt)Al phases on the nickel-base substrate and PtAl2 + CoAl phases on the cobalt-base substrate. Hot corrosion testing was conducted at 900 °C for 100 h in the presence of 75%Na2SO4 + 25%NaCl salts, while oxidation behavior was studied at 1050 °C for 200 h for both coatings. The study results showed that the Pt–Rh–aluminide coating on the cobalt-based substrate had better resistance to hot corrosion, while the Pt–aluminide coating on the nickel-based substrate had better oxidation resistance. The study also discussed the role of Pt, Rh, and substrate composition on the coatings’ hot corrosion and oxidation behavior. The morphology of oxide scales and corroded and oxidized coatings cross-sections were studied using SEM, EDS, and XRD analysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M.M. Barjesteh, S.M. Abbasi, K.Z. Madar, K. Shirvani, J. Min. Metall. B Metall. 55(2), 235–251 (2019)

    Article  CAS  Google Scholar 

  2. Y.F. Yang, C.Y. Jiang, Z.B. Bao, S.L. Zhu, F.H. Wang, Corr. Sci. 106, 43–54 (2016)

    Article  CAS  Google Scholar 

  3. Y.A. Elizarova, A.I. Zakharov, Refract. Indust. Ceram. 61, 592–599 (2021)

    Article  CAS  Google Scholar 

  4. B. Gleeson, Oxid. Met. 75, 121–123 (2011)

  5. B. Rezaee, S. Rastegari, H. Eyvazjamadi, Surf. Eng. 37, 343–350 (2021)

    Article  CAS  Google Scholar 

  6. O. Ogunbiyi, T. Jamiru, R. Sadiku, O. Adesina, O.S. Adesina, B.A. Obadele, Met. Mater. Int. 28, 695–709 (2022)

    Article  CAS  Google Scholar 

  7. K. Nanan, https://www.corrosionpedia.com/2/1368/prevention/cathodic-protection/cathodic-protection-101. Accessed 29 June 2020

  8. R. Rajendran, Eng. Fail. Anal. 26, 355–369 (2012)

    Article  Google Scholar 

  9. G.Y. Lai, High-Temperature Corrosion and Materials Applications (ASM International, Materials Park, 2007). https://doi.org/10.31399/asm.tb.htcma.9781627083041

  10. S. Bose, High Temperature Coatings (Butterworth-Heinemann, Oxford, 2007)

  11. J.R. Nicholls, N.J. Simms, Shreir’s Corrosion 1, 518–540 (2010). https://doi.org/10.1016/B978-044452787-5.00026-3

    Article  Google Scholar 

  12. S. Kamal, R. Jayaganthan, S. Prakash, Bull. Mater. Sci. 33, 299–306 (2010)

    Article  CAS  Google Scholar 

  13. M.M. Barjesteh, S.M. Abbasi, K. Zangeneh-Madar, K. Shirvani, J. Min. Metall. B Metall. 57(3), 401–412 (2021)

    Article  CAS  Google Scholar 

  14. K. Shirvani, A. Rashidghamat, Oxid. Met. 85, 75–85 (2016)

    Article  CAS  Google Scholar 

  15. S.M. Taghavi Kouzehkanan, J.E. Hong, T.S. Oh, J. Mater. Sci. 58(12), 5178–5185 (2023)

    Article  CAS  Google Scholar 

  16. M.J. Li, X.F. Sun, H.R. Guan, X.X. Jiang, Z.Q. Hu, Oxid. Met. 59, 483–502 (2003)

    Article  CAS  Google Scholar 

  17. M. Zagula-Yavorska, Metals 8(8), 613 (2018)

    Article  Google Scholar 

  18. J. Schaeffer, G.M. Kim, G.H. Meier, F.S. Pettit, in The Role of Active Elements in the Oxidation Behaviour of High Temperature Metals and Alloys, ed. by E. Lang (Springer, Dordrecht, 1989), pp. 231–267. https://doi.org/10.1007/978-94-009-1147-5_16

  19. K. Ahammed, S.M. Taghavi Kouzehkanan, T.-S. Oh, Q. Huang, J. Alloys Compd. 960, 170808 (2023)

  20. B. Gleeson, in Materials Science and Technology: A Comprehensive Treatment: Corrosion and Environmental Degradation, Volumes I+II, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (Wiley, Weinheim, 2000), pp. 173–228. https://doi.org/10.1002/9783527619306.ch14

  21. M.W. Brumm, H.J. Grabke, Corr. Sci. 33(11), 1677–1690 (1992)

    Article  CAS  Google Scholar 

  22. M.W. Brumm, H.J. Grabke, Corr. Sci. 34(4), 547–561 (1993)

    Article  CAS  Google Scholar 

  23. M.W. Brumm, H.J. Grabke, B. Wagemann, Corr. Sci. 36(1), 37–53 (1994)

    Article  CAS  Google Scholar 

  24. Y.M. Li, X.G. Wang, Z.H. Tan, Y.H. Yang, J.L. Liu, J.D. Liu, X.F. Sun, Met. Mater. Int. 28, 2305–2317 (2022)

    Article  CAS  Google Scholar 

  25. R. Streiff, O. Cerclier, D.H. Boone, Surf. Coat. Tech. 32, 111–126 (1987)

    Article  CAS  Google Scholar 

  26. S.A. Azarmehr, K. Shirvani, A. Solimani, M. Schütze, M.C. Galetz, Surf. Coat. Tech. 362, 252–261 (2019)

    Article  CAS  Google Scholar 

  27. Y.F. Yang, C.Y. Jiang, Z.Y. Zhang, Z.B. Bao, M.H. Chen, S.L. Zhu, F.H. Wang, Corr. Sci. 127, 82–90 (2017)

    Article  CAS  Google Scholar 

  28. L. Ye, H. Chen, G. Yang, Y. Cui, H. Luo, B. Liu, Y. Gao, Int. J. Mater. Res. 109(1), 3–9 (2018)

    Article  CAS  Google Scholar 

  29. Y. Li, S. Li, C. Zhang, N. Xu, Z. Bao, Crystals 11(8), 972 (2021)

    Article  CAS  Google Scholar 

  30. E.J. Felten, F.S. Pettit, Oxid. Met. 10(3), 189–223 (1976)

    Article  CAS  Google Scholar 

  31. N. Vialas, D. Monceau, Surf. Coat. Tech. 201, 3846–3851 (2006)

    Article  CAS  Google Scholar 

  32. Y. Wang, G. Sayre, Surf. Coat. Tech. 203(16), 2186–2192 (2009)

    Article  CAS  Google Scholar 

  33. R.S. Bangari, S. Sahu, P.C. Yadav, J. Mater. Res. 33(8), 1023–1031 (2018)

    Article  CAS  Google Scholar 

  34. P.S. Liu, K.M. Liang, S.R. Gu, Corr. Sci. 43(7), 1217–1226 (2001)

    Article  CAS  Google Scholar 

  35. E.J. Felten, Oxid. Met. 10, 23–28 (1976)

    Article  CAS  Google Scholar 

  36. M. Zagula-Yavorska, M. Wierzbińska, J. Sieniawski, Metals 7(12), 548 (2017)

    Article  Google Scholar 

  37. J. Stueber Richard, J. Klach Stanley, Platinum-rhodium-containing high temperature alloy coating method, US4070507A (1976)

  38. V. Genova, L. Paglia, G. Pulci, C. Bartuli, F. Marra, Coatings 11(4), 412 (2021)

    Article  CAS  Google Scholar 

  39. H. Liu, S. Li, C.Y. Jiang, C.T. Yu, Z.B. Bao, S.L. Zhu, F.H. Wang, Acta Metall. Sinica (Engl. Lett.) 32, 1490–1500 (2019)

    Article  CAS  Google Scholar 

  40. N. Tepylo, X. Huang, Q. Yang, Mater. High Temp. 36(6), 499–510 (2019)

    Article  CAS  Google Scholar 

  41. M. Zagula-Yavorska, High Temp. Mater. Proc. 38, 621–627 (2019)

    Article  CAS  Google Scholar 

  42. Q. Fan, H. Yu, T. Wang, Y. Liu, Coatings 8(8), 264 (2018)

    Article  Google Scholar 

  43. P.K. Koech, C.J. Wang, Oxid. Met. 90, 713–735 (2018)

    Article  CAS  Google Scholar 

  44. D.K. Das, Prog. Mater. Sci. 58, 151–182 (2013)

    Article  Google Scholar 

  45. P.Y. Hou, V.K. Tolpygo, Surf. Coat. Tech. 202, 623–627 (2007)

    Article  CAS  Google Scholar 

  46. J.W. Lee, Y.C. Kuo, Surf. Coat. Tech. 201, 3867–3871 (2006)

    Article  CAS  Google Scholar 

  47. D.K. Das, M. Roy, V. Singh, S.V. Joshi, Mater. Sci. Technol. 15(10), 1199–1208 (1999)

    Article  CAS  Google Scholar 

  48. G.C. Rybicki, J.L. Smialek, Oxid. Met. 31, 275–304 (1989)

    Article  CAS  Google Scholar 

  49. I. Guzman, A. Garza, F. Garcia, J. Acevedo, R. Méndez, MRS Online Proc. Libr. 1372, 81–8 (2011)

    Article  Google Scholar 

  50. N.R. Lindblad, Oxid. Met. 1, 143–170 (1969)

    Article  Google Scholar 

  51. S. Polsilapa, A. Promboopha, P. Wangyao, Mater. Sci. Forum 891, 420-425 (2017)

    Article  Google Scholar 

  52. T. Grosdidier, A. Hazotte, A. Simon, Mater. Sci. Eng. A 256(1–2), 183–196 (1998)

    Article  Google Scholar 

  53. C. Li, X. Xu, S. Wang, V.M. Tabie, S. Yang, T. Zhang, Y. Liu, Mater. Res. Exp. 6(8), 086444 (2019)

    Article  CAS  Google Scholar 

  54. Y. Zhou, C. Mo, H. Wang, Metall. Res. Technol. 118(3), 313 (2021)

    Article  CAS  Google Scholar 

  55. M. Chen, K. Feng, M. Li, C. Zhou, Corr. Sci. 166, 108431 (2020)

    Article  CAS  Google Scholar 

  56. W. Gui, X. Zhang, H. Zhang, X. Sun, Q. Zheng, J. Alloys Compd. 787, 152–157 (2019)

    Article  CAS  Google Scholar 

  57. C. Wagner, J. Electrochem. Soc. 99, 346C-354C (1952)

    Article  CAS  Google Scholar 

  58. N.U. Khan, S.K. Rajput, M. Yadav, Surf. Sci. Tech. 1, 22 (2023)

    Article  Google Scholar 

  59. M. Sathishkumar, M. Manikandan, N. Arivazhagan, B. Arulmurugan, S.K. Selvaraj, M. Vignesh, S. Rajkumar, Mater. Res. Exp. 9(2), 020008 (2022)

    Article  CAS  Google Scholar 

  60. S. Septianissa, B. Prawara, E.A. Basuki, E. Martides, E. Riyanto, Int. J. Electrochem. Sci. 17(12), 221231 (2022)

    Article  CAS  Google Scholar 

  61. S. Kamal, K.V. Sharma, A.M. Abdul-Rani, J. Miner. Mater. Charact. Eng. 3, 26–36 (2015)

    Google Scholar 

  62. G. Fu, X. Guo, Q. Liu, X. Zhao, Y. Su, High Temp. Mater. Proc. 32, 317–321 (2013)

  63. G.Y. Fu, J.Y. Chen, Q. Liu, Y. Su, Adv. Mat. Res. 391-392, 1263–1267 (2011)

  64. J.M. Alvarado-Orozco, R. Morales-Estrella, M.S. Boldrick, J.L. Ortiz-Merino, D.G. Konitzer, G. Trápaga-Martínez, J. Muñoz-Saldaña, Oxid. Met. 78, 269–284 (2012)

    Article  CAS  Google Scholar 

  65. M. Abedini, M.R. Jahangiri, P. Karimi, Oxid. Met. 90, 469–484 (2018)

    Article  CAS  Google Scholar 

  66. Z. Chen, M. Wu, Y. Pei, S. Li, S. Gong, npj Mater. Degrad. 5, 21 (2021)

    Article  CAS  Google Scholar 

  67. J. Meng, M. Chen, X. Shi, Q. Ma, Trans. Nonferrous Met. Soc. China 31, 2402–2414 (2021)

  68. M.M. Balashadehi, P. Nourpour, A.S.R. Aghdam, M.H. Allahyarzadeh, A. Heydarzadeh, M. Hamdi, Surf. Coat. Tech. 402, 126283 (2020)

    Article  Google Scholar 

  69. Z. Xu, W. Jinchu, Z. Liang, Z. Hui, Y. Zonghui, Met. Mater. Int. 29, 3645–3654 (2023)

    Article  CAS  Google Scholar 

  70. Z. Li, Investigation of the Minor-Element Effects on the Oxidation Behavior of γ-NI+ γ’-NI3AL Alloys, Doctoral dissertation, University of Pittsburgh (2015)

  71. I. Gurrappa, I.V.S. Yashwanth, I. Mounika, H. Murakami, S. Kuroda, in Gas Turbines - Materials, Modeling and Performance, ed. by G. Injeti (IntechOpen, London, 2015), pp. 55–102

    Article  Google Scholar 

  72. W. Tabakoff, A. Hamed, M. Metwally, M. Pasin, J. Eng. Gas. Turbine Power 114(2), 242–249 (1992)

    Article  CAS  Google Scholar 

  73. M. Pushpavanam, V. Raman, B.A. Shenoi, Surf. Technol. 12(4), 351–360 (1981)

    Article  CAS  Google Scholar 

  74. A.S. Khanna (ed.), in High Temperature Corrosion (World Scientific, Singapore, 2016), pp. 1–31

  75. H. Alimadadi, C. Kjartansdóttir, A. Burrows, T. Kasama, P. Møller, Mater. Charact. 130, 105–112 (2017)

  76. S. Nouri, S. Rastegari, S. Mirdamadi, M. Hadavi, Surf. Eng. 31(12), 930–933 (2015)

    Article  CAS  Google Scholar 

  77. Y. Li, J. Nie, Y. Yang, P. Bai, H. Zhang, Z. Zhao, S. Wei, J. Cai, Q. Guan, Met. Mater. Int. 28, 412–420 (2022)

  78. V.T. Targhi, H. Omidvar, S.M.M. Hadavi, F. Sharifianjazi, Mater. Res. Exp. 7(5), 056527 (2020)

    Article  CAS  Google Scholar 

  79. R. Hutchings, M.H. Loretto, Metal Sci. 12(11), 503–510 (1978)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Turbine Machine Company for supporting and supplying substrate samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atieh Koochaki-Abkenar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koochaki-Abkenar, A., Malekan, A., Bozorg, M. et al. Hot Corrosion and Oxidation Behavior of Pt–Aluminide and Pt–Rh–Aluminide Coatings Applied on Nickle-Base and Cobalt-Base Substrates. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01653-5

Keywords

Navigation