Skip to main content
Log in

Effects of Spray Parameters on the YSZ-Alumina Splat Formation During Solution Precursor High Velocity Flame Spraying

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Solution precursor thermal Spraying (SPTS) processes that have been successfully developed, are suitable methods for producing nanostructured coatings. In the SPTS coatings, important features are splat, porosity, un-melted particles and un-pyrolysed precursor. Such features can be studied by observing deposit collected by spraying only a single pass on to the substrate. In the present study, deposition of YSZ-40 wt% Al2O3 on glass substrates by solution precursor high velocity flame spraying (SP-HVFS) of zirconium oxy nitrate, yttrium nitrate and aluminum nitrate solutions mixed with suitable percentage to result YSZ-40 wt% Al2O3 in single scan experiment has been studied/for the first time. In order to investigate the SP-HVFS process, all spraying parameters including the fuel-oxygen ratio, the spraying distance and the feed rate of solution precursor were varied. The results of thermal analysis showed that precursor decomposition is an exothermic reaction that mainly occurs at temperatures above 250 °C. Also, the phase compositions of the YSZ-40 wt% Al2O3 powders resulted from pyrolysation of the precursor in furnace at different temperatures were investigated by X-ray diffraction, which confirmed that with increasing heat treatment temperature, the degree of crystallinity and grain size of YSZ-40 wt% Al2O3 powder increases. The morphology of the deposits formed on the glass substrates and their structural characteristics were studied using Field Emission Scanning Electron Microscope. Structural comparison of deposits formed on glass substrates in the single scan experiment showed that at low fuel and oxygen flow rates (30 and 300 l/min respectively), solution precursor injection rate of 20 cm3/min and spray distance of 5 cm, the amount of splats increased. Also, high fuel and oxygen flow rates (50 and 450 l/min respectively), the solution precursor feed rate of 40 cm3/min and spray distance of 5 cm was introduced as the optimal parameter due to higher splats observed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Gell, L. Xie, X. Ma, E.H. Jordan, N.P. Padture, Highly durable thermal barrier coatings made by the solution precursor plasma spray process. Surf. Coat. Technol. 177, 97–102 (2004)

    Article  Google Scholar 

  2. A. Jadhav, N.P. Padture, F. Wu, E.H. Jordan, M. Gell, Thick ceramic thermal barrier coatings with high durability deposited using solution-precursor plasma spray. Mater. Sci. Eng. A 405(1–2), 313–320 (2005)

    Article  Google Scholar 

  3. L. Xie, X. Ma, E.H. Jordan, N.P. Padture, D.T. Xiao, M. Gell, Deposition mechanisms of thermal barrier coatings in the solution precursor plasma spray process. Surf. Coat. Technol. 177, 103–107 (2004)

    Article  Google Scholar 

  4. C. Jiang, D. Cietek, R. Kumar, E.H. Jordan, Ytterbium silicate environmental barrier coatings deposited using the solution-based precursor plasma spray. J. Therm. Spray Technol. 29(5), 979–994 (2020)

    Article  CAS  Google Scholar 

  5. E.H. Jordan et al., Superior thermal barrier coatings using solution precursor plasma spray. J. Therm. Spray Technol. 13(1), 57–65 (2004)

    Article  CAS  Google Scholar 

  6. D. Chen, E.H. Jordan, M. Gell, X. Ma, Dense alumina–zirconia coatings using the solution precursor plasma spray process. J. Am. Ceram. Soc. 91(2), 359–365 (2008)

    Article  CAS  Google Scholar 

  7. A. Ganvir, Microstructure and thermal conductivity of liquid feedstock plasma sprayed thermal barrier coatings, University West, 2016.

  8. J. Puranen, J. Laakso, M. Kylmälahti, P. Vuoristo, Characterization of high-velocity solution precursor flame-sprayed manganese cobalt oxide spinel coatings for metallic SOFC interconnectors. J. Therm. Spray Technol. 22(5), 622–630 (2013)

    Article  CAS  Google Scholar 

  9. J. Puranen et al., High temperature oxidation tests for the high velocity solution precursor flame sprayed manganese–cobalt oxide spinel protective coatings on SOFC interconnector steel. Int. J. Hydrog. Energy 40(18), 6216–6227 (2015)

    Article  CAS  Google Scholar 

  10. D. Chen, E.H. Jordan, M. Gell, Solution precursor high-velocity oxy-fuel spray ceramic coatings. J. Eur. Ceram. Soc. 29(16), 3349–3353 (2009)

    Article  CAS  Google Scholar 

  11. M. Alotaibi, Application of an image-based model of the elastic modulus of porous thermal barrier coatings. Met. Mater. Int. 28(8), 1794–1808 (2022)

    Article  Google Scholar 

  12. D. Tejero-Martin, Z. Pala, S. Rushworth, T. Hussain, Splat formation and microstructure of solution precursor thermal sprayed Nb-doped titanium oxide coatings. Ceram. Int. 46(4), 5098–5108 (2020)

    Article  CAS  Google Scholar 

  13. J. Mostaghimi, S. Chandra, Splat formation in plasma-spray coating process. Pure Appl. Chem. 74(3), 441–445 (2002)

    Article  CAS  Google Scholar 

  14. S. Brossard, Microstructural Analysis of Thermal Spray Coatings by electron Microscopy, University of New South Wales, Sydney 2010.

  15. X. Chen, C. Li, S. Li, X. Han, H. Jiang, X. Zhao, HVOF spray performance optimization analysis and experimental research of WC–12Co coating on Ti alloy. Met. Mater. Int. (2023). https://doi.org/10.1007/s12540-023-01458-y

    Article  Google Scholar 

  16. G. Bolelli, J. Rauch, V. Cannillo, A. Killinger, L. Lusvarghi, R. Gadow, Microstructural and tribological investigation of high-velocity suspension flame sprayed (HVSFS) Al2O3 coatings. J. Therm. Spray Technol. 18, 35–49 (2009)

    Article  CAS  Google Scholar 

  17. T. Sidhu, S. Prakash, R. Agrawal, Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications. Mater. Sci. 41, 805–823 (2005)

    Article  CAS  Google Scholar 

  18. S. Choi, N. Bansal, Mechanical behavior of zirconia/alumina composites. Ceram. Int. 31(1), 39–46 (2005)

    Article  CAS  Google Scholar 

  19. N.P. Bansal, D. Zhu, Thermal conductivity of zirconia–alumina composites. Ceram. Int. 31(7), 911–916 (2005)

    Article  CAS  Google Scholar 

  20. D. Casellas, I. Ràfols, L. Llanes, M. Anglada, Fracture toughness of zirconia–alumina composites. Int. J. Refract. Met. Hard Mater. 17(1–3), 11–20 (1999)

    Article  Google Scholar 

  21. P. Fabbri, C. Piconi, E. Burresi, G. Magnani, F. Mazzanti, C. Mingazzini, Lifetime estimation of a zirconia–alumina composite for biomedical applications. Dent. Mater. 30(2), 138–142 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. S. Taghi-Ramezani, Z. Valefi, M. Mirjani, R. Ghasemi, The influence of pyrolysing Al2O3 precursor on the high temperature properties of the YSZ-Al2O3 composite coating. Surf. Eng. 37(8), 991–1001 (2021)

    Article  CAS  Google Scholar 

  23. M. Saremi, Z. Valefi, N. Abaeian, Hot corrosion, high temperature oxidation and thermal shock behavior of nanoagglomerated YSZ–alumina composite coatings produced by plasma spray method. Surf. Coat. Technol. 221, 133–141 (2013)

    Article  CAS  Google Scholar 

  24. J.G. Thakare, C. Pandey, M. Mahapatra, R.S. Mulik, Thermal barrier coatings: a state of the art review. Met. Mater. Int. 27(7), 1947–1968 (2021)

    Article  Google Scholar 

  25. Y. Wang, C. He, B. Hockey, P. Lacey, S. Hsu, Wear transitions in monolithic alumina and zirconia–alumina composites. Wear 181, 156–164 (1995)

    Article  Google Scholar 

  26. H. Kwon et al., Effect of process-gas composition on in-flight and deposition characteristics of atmospheric plasma-sprayed Ni particles. Met. Mater. Int. 29(6), 1825–1840 (2023)

    Article  CAS  Google Scholar 

  27. V. Singh, R. Draper, S. Seal, Effect of processing parameters on cerium oxide coating deposition in solution precursor plasma spray. J. Am. Ceram. Soc. 96(8), 2437–2444 (2013)

    Article  CAS  Google Scholar 

  28. T. Yang, W. Ma, X. Meng, W. Huang, Y. Bai, H. Dong, Deposition characteristics of CeO2–Gd2O3 co-stabilized zirconia (CGZ) coating prepared by solution precursor plasma spray. Surf. Coat. Technol. 381, 125114 (2020)

    Article  CAS  Google Scholar 

  29. S. Govindarajan, R.O. Dusane, S.V. Joshi, In situ particle generation and splat formation during solution precursor plasma spraying of yttria-stabilized zirconia coatings. J. Am. Ceram. Soc. 94(12), 4191–4199 (2011)

    Article  CAS  Google Scholar 

  30. Y. Zhao et al., Effects of calcination temperature on grain growth and phase transformation of nano-zirconia with different crystal forms prepared by hydrothermal method. J. Mater. Res. Technol. 19, 4003–4017 (2022)

    Article  CAS  Google Scholar 

  31. M. Oksa, E. Turunen, T. Suhonen, T. Varis, S.-P. Hannula, Optimization and characterization of high velocity oxy-fuel sprayed coatings: techniques, materials, and applications. Coatings 1(1), 17–52 (2011)

    Article  Google Scholar 

  32. H. Hu, L. Mao, S. Yin, H. Liao, C. Zhang, Wear-resistant ceramic coatings deposited by liquid thermal spraying. Ceram. Int. 48, 33245–33255 (2022)

    Article  CAS  Google Scholar 

  33. D. Chen, E.H. Jordan, M. Gell, Effect of solution concentration on splat formation and coating microstructure using the solution precursor plasma spray process. Surf. Coat. Technol. 202(10), 2132–2138 (2008)

    Article  CAS  Google Scholar 

  34. Z. Valefi, M. Saremi, The effects of plasma spray parameters on the microstructure and phase composition of thermal barrier coatings made by SPPS process. Iran. J. Mater. Sci. Eng. 14(2), 11–23 (2017)

    Google Scholar 

  35. D. Chen, E.H. Jordan, M. Gell, The solution precursor plasma spray coatings: influence of solvent type. Plasma Chem. Plasma Process. 30(1), 111–119 (2010)

    Article  Google Scholar 

  36. W. Fan, Y. Bai, Review of suspension and solution precursor plasma sprayed thermal barrier coatings. Ceram. Int. 42(13), 14299–14312 (2016)

    Article  CAS  Google Scholar 

  37. L. Pawlowski, Suspension and solution thermal spray coatings. Surf. Coat. Technol. 203(19), 2807–2829 (2009)

    Article  CAS  Google Scholar 

  38. T. Bhatia et al., Mechanisms of ceramic coating deposition in solution-precursor plasma spray. J. Mater. Res. 17(9), 2363–2372 (2002)

    Article  CAS  Google Scholar 

  39. M. Saremi, Z. Valefi, The effects of spray parameters on the microstructure and thermal stability of thermal barrier coatings formed by solution precursor flame spray (spfs). Surf. Coat. Technol. 220, 44–51 (2013)

    Article  CAS  Google Scholar 

  40. P. Fauchais, A. Vardelle, Solution and suspension plasma spraying of nanostructure coatings, in Advanced Plasma Spray Applications, ed. by H.S. Jazi (IntechOpen, London, 2012), pp. 149–188

    Google Scholar 

  41. W. Yang, M. Jia, K. Sun, T. Wang, Influence of density ratio on the secondary atomization of liquid droplets under highly unstable conditions. Fuel 174, 25–35 (2016)

    Article  CAS  Google Scholar 

  42. D. Cheng, Q. Xu, E. Lavernia, G. Trapaga, The effect of particle size and morphology on the in-flight behavior of particles during high-velocity oxyfuel thermal spraying. Metall. Mater. Trans. B 32, 525–535 (2001)

    Article  Google Scholar 

  43. M. Li, P.D. Christofides, Modeling and control of high-velocity oxygen-fuel (HVOF) thermal spray: a tutorial review. J. Therm. Spray Technol. 18, 753–768 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Taghi-Ramezani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghi-Ramezani, S., Valefi, Z. Effects of Spray Parameters on the YSZ-Alumina Splat Formation During Solution Precursor High Velocity Flame Spraying. Met. Mater. Int. 30, 928–940 (2024). https://doi.org/10.1007/s12540-023-01548-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01548-x

Keywords

Navigation