Skip to main content
Log in

HVOF Spray Performance Optimization Analysis and Experimental Research of WC–12Co Coating on Ti Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

TC18 titanium alloy, with low density, high strength and corrosion resistance, is a significant material for the main load-bearing components of aircraft landing gear and other aviation structures. However, its corrosion resistance and wear resistance are insufficient when it is serviced in the extreme corrosion environments such as sea salt spray and hygrothermal, which greatly affects its wide application. It is significant to design and develop high-quality anti-corrosion and wear resistant coatings for TC18 titanium alloy. High Velocity Oxygen Fuel (HVOF) spraying WC–12Co is an ideal strengthening method to replace surface chromium plating. Quantitatively evaluating the influence of spraying process parameters on the coating quality is the key to prepare high-quality coatings. In this study, a numerical model of HVOF spraying WC–12Co was established with JP5000 spray gun. The spray combustion reaction model and discrete phase model were solved to reveal the evolution characteristics of combustion flame flow and particle flight behavior in the spraying process. Based on the response surface method, the optimum spraying process parameters were determined, and the WC–12Co coatings were prepared. On this basis, the coating was tested by the SEM, XRD, hardness, friction and wear, salt spray corrosion and seawater corrosion. The corrosion resistance and wear resistance of the WC–12Co coating were comprehensively evaluated. The experiment shows that the WC–12Co coating prepared by HVOF spraying has great performance, which can effectively improve the protective performance of TC18 substrate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Y. Lv, P. Zhang, D. Wei, X. Chen, F. Ding, F. Su, H, Li, Mater. Res. Express 5, 066411 (2018)

    Google Scholar 

  2. J.J. Nol, N. Ebrahimi, D.W. Shoesmith, in Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, vol. 6, ed. by K. Wandelt, (Elsevier, Amsterdam, 2018), pp. 192–200

  3. M. Li, P.D. Christofides, Chem. Eng. Sci. 61, 6540 (2006)

  4. I. Baumann, L. Hagen, W. Tillmann, P. Hollingsworth, D. Stangier, G. Schmidtmann, M. Tolan, M. Paulus, C. Sternemann, Surf. Coat. Tech. 405, 126716 (2020)

  5. I. Baumann, W. Tillmann, C. Schaak, K. Schmidt, L. Hagen, J. Zajaczkowski, G. Schmidtmann, G. Matthäus, W. Luo, J. Therm. Spray Technol. 30, 1344 (2021)

    Article  Google Scholar 

  6. M. Jadidi, S. Moghtadernejad, A. Dolatabadi, Coatings 5, 576 (2015)

  7. Y. Sun, Study on Combustion Characteristic and Paticles Behavior of HVOF Spraying, Dissertation, China University of Petroleum (2011)

    Google Scholar 

  8. H. Tabbara, S. Gu, D.G. McCartney, Comput. Fluids 44, 358 (2011)

    Article  Google Scholar 

  9. J.S. Baik, Y.-J. Kim, Surf. Coat. Tech. 202, 5457 (2008)

    Article  Google Scholar 

  10. H. Jafari, S. Emami, Y. Mahmoudi, Appl. Therm. Eng. 111, 745 (2017)

  11. J. Pan, S. Hu, L. Yang, K. Ding, B. Ma, Mater. Des. 96, 370 (2016)

    Article  Google Scholar 

  12. C. Li, X. Gao, D. Zhang, H. Gao, X. Han, B. Zhang, J. Therm. Spray Technol. 30, 725 (2021)

    Google Scholar 

  13. L. Qiao, Y. Wu, S. Hong, J. Chen, Z. Wei, Surf. Coat. Tech. 366, 296 (2019)

  14. C.J. Li, G.-J. Yang, Int. J. Refract. Met. H. 39, 2 (2013)

  15. H. Myalska, K. Szymański, G. Moskal, Solid State Phenom. 246, 117 (2016)

    Article  Google Scholar 

  16. E. Jonda, L. Atka, W. Pakiea, Materials 14, 1594 (2021)

    Article  Google Scholar 

  17. A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C. Berndt, J. Berghaus et al., J. Therm. Spray Technol. 25, 1376 (2016)

  18. I. Baumann, W. Tillmann, C. Schaak, K. Schmidt, L. Hagen, J. Zajaczkowski, G. Schmidtmann, G. Matthäus, W. Luo, J. Therm. Spray Technol. 30, 1344 (2021)

    Article  Google Scholar 

  19. D.G. Pradeep, C.V. Venkatesh, H.S. Nithin, J. Bio Tribo-Corros. 8, 30 (2022)

  20. S. Kamnis, S. Gu, Chem. Eng. Sci. 61, 5427 (2006)

    Article  Google Scholar 

  21. B.F. Magnussen, B.H. Hjertager, Symp. (Int.) Combust. 16, 719 (1977)

  22. R. Kamali, A.R. Binesh, Int. Commun. Heat Mass Transf. 36, 978 (2009)

    Google Scholar 

  23. K.P. Kundu, P.F. Penko, S.L. Yang, Simplified Jet-A/air combustion mechanisms for calculation of NO(x) emissions, in 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, 13-15 July 1998

  24. M.N. Khan, T. Shamim, Appl. Energy 130, 853 (2014)

  25. S.V. Joshi, R. Sivakumar, Surf. Coat. Tech. 50, 67 (1991)

  26. B. Zha, X. Jia, J. Wang, Y. Shi, Q. Su, T. Zhang, Surf. Technol. 49, 101 (2020)

  27. R.K. Sharma, R.K. Das, S.R. Kumar, Proc. Inst. Mech. Eng. Part L 235, 1703 (2021)

  28. M. Azzeddine, R. Amine, C. Billel, L. Islam, M. Djamel, B. Aniss-Rabah, D. Nadjib, D. Boubekeur, Int. J Adv. Manuf. Technol. 114, 1 (2021)

    Article  Google Scholar 

  29. A. Mazouzi, B. Djerdjare, S. Triaa, A. Rezzoug, B. Cheniti, S.M. Aouadi, J. Mater. Res. 35, 2798 (2020)

Download references

Acknowledgements

This work was supported by the Liaoning Province Innovative Talent Support Program (20201020), Anshan City "revealed the top" technical research project (202211) and Applied Basic Research Project of Liaoning Province (2023JH2/101300226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent to Participate

Not applicable.

Consent to Publish

All authors consented to the publication.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, C., Li, S. et al. HVOF Spray Performance Optimization Analysis and Experimental Research of WC–12Co Coating on Ti Alloy. Met. Mater. Int. 29, 3548–3565 (2023). https://doi.org/10.1007/s12540-023-01458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01458-y

Keywords

Navigation