Skip to main content
Log in

Grain Refinement with Remarkable Basal Texture of Hot-Dipped Zn–Al–Mg Alloy Coating on a Steel Sheet: Evidence of Dendrite Fragmentation

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Hot-dip galvanized (HDG) Zn-1.7Al-1.4 Mg (wt%) coatings were fabricated on a steel sheet with an increased after-pot cooling rate. Microstructure and microtexture analyses showed that the primary Zn phase in the coatings exhibited a fine-grained equiaxed microstructure with an extremely sharp basal texture (~1630 × random). The increased after-pot cooling rate induced the primary Zn phase to nucleate within the undercooled coating layer, away from the steel substrate. This study provides evidence that the fine equiaxed Zn grains originated from the fragmentation of primary Zn dendrites prior to binary and ternary eutectic solidification, which was previously unknown for HDG coatings. The sharp basal texture of the refined Zn grains indicates that all primary Zn dendrites, prior to their fragmentation, were aligned with their crystallographic c-axes parallel to the coating plane normal. We propose that the primary Zn dendrites, which initially nucleated with random orientations, rotate into the final orientations as their primary arms grow along the \(\langle 10\overline{1 }0\rangle\) directions and impinge on the substrate or melt surface. The results of the present study provide further insights into the microstructural modification of HDG Zn–Al–Mg alloy coatings by controlling the hot-dip processing parameters.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.M.A. Shibli, B.N. Meena, R. Remya, Surf. Coat. Technol. 262, 210–215 (2015). https://doi.org/10.1016/j.surfcoat.2014.12.054

    Article  CAS  Google Scholar 

  2. P. Volovitch, T.N. Vu, C. Allély, A. Abdel Aal, K. Ogle, Corros. Sci. 53, 2437–2445 (2011). https://doi.org/10.1016/j.corsci.2011.03.016

    Article  CAS  Google Scholar 

  3. T. Prosek, D. Persson, J. Stoulil, D. Thierry, Corros. Sci. 86, 231–238 (2014). https://doi.org/10.1016/j.corsci.2014.05.016

    Article  CAS  Google Scholar 

  4. M.S. Oh, S.H. Kim, J.S. Kim, J.W. Lee, J.H. Shon, Y.S. Jin, Met. Mater. Int. 22, 26–33 (2016). https://doi.org/10.1007/s12540-015-5411-9

    Article  CAS  Google Scholar 

  5. J. Strutzenberger, J. Faderl, Metall. Mater. Trans. A 29, 631–645 (1998). https://doi.org/10.1007/s11661-998-0144-8

    Article  Google Scholar 

  6. A. Sémoroz, L. Strezov, M. Rappaz, Metall. Mater. Trans. A 33, 2685–2694 (2002). https://doi.org/10.1007/s11661-002-0390-0

    Article  Google Scholar 

  7. S.G. Kim, H.S. Hwang, J.Y. Huh, Comp. Mater. Sci. 186, 110060 (2021). https://doi.org/10.1016/j.commatsci.2020.110060

    Article  CAS  Google Scholar 

  8. T. Prosek, J. Hagström, D. Persson, N. Fuertes, F. Lindberg, O. Chocholatý, C. Taxén, J. Šerák, D. Thierry, Corros. Sci. 110, 71–81 (2016). https://doi.org/10.1016/j.corsci.2016.04.022

    Article  CAS  Google Scholar 

  9. S. Farahany, L.H. Tat, E. Hamzah, H.R. Bakhsheshi-Rad, M.H. Cho, Surf. Coat. Technol. 315, 112–122 (2017). https://doi.org/10.1016/j.surfcoat.2017.01.074

    Article  CAS  Google Scholar 

  10. N. LeBozec, D. Thierry, D. Persson, C.K. Riener, G. Luckeneder, Surf. Coat. Technol. 374, 897–909 (2019). https://doi.org/10.1016/j.surfcoat.2019.06.052

    Article  CAS  Google Scholar 

  11. N. Wint, N. Cooze, J.R. Searle, J.H. Sullivan, G. Williams, H.N. McMurray, G. Luckeneder, C. Riener, J. Electrochem. Soc. 166, C3147–C3158 (2019). https://doi.org/10.1149/2.0171911jes

    Article  CAS  Google Scholar 

  12. M. Xu, D. Han, Z. Zheng, R. Ma, A. Du, Y. Fan, X. Zhao, X. Cao, Surf. Coat. Technol. 444, 128665 (2022). https://doi.org/10.1016/j.surfcoat.2022.128665

    Article  CAS  Google Scholar 

  13. K. Abotani, K. Hirohata, T. Kiyasu, Kawasaki Steel Tech. Report 48, 17–22 (2003). https://www.jfe-steel.co.jp/archives/en/ksc_giho/no.48/e48-017-022.pdf

  14. M.H. Hong, J.Y. Lee, D.J. Paik, Korean J. Met. Mater. 49, 831–838 (2011). https://doi.org/10.3365/KJMM.2011.49.11.831

    Article  CAS  Google Scholar 

  15. M. Ahmadi, B. Salgın, B.J. Kooi, Y. Pei, Mater. Sci. Eng. A 840, 142995 (2022). https://doi.org/10.1016/j.msea.2022.142995

    Article  CAS  Google Scholar 

  16. M. Ahmadi, B. Salgın, B.J. Kooi, Y. Pei, Scripta Mater. 210, 114453 (2022). https://doi.org/10.1016/j.scriptamat.2021.114453

    Article  CAS  Google Scholar 

  17. M. Dutta, S. Ganguly, G. Jha, A.K. Singh, S. Chakrabaru, N. Rajesh, ISIJ Int. 45, 366–372 (2005). https://doi.org/10.2355/isijinternational.45.366

    Article  CAS  Google Scholar 

  18. J. Elvins, J.A. Spittle, D.A. Worsley, Corros. Sci. 47, 2740–2759 (2005). https://doi.org/10.1016/j.corsci.2004.11.011

    Article  CAS  Google Scholar 

  19. S. Kaboli, J.R. McDermid, Metall. Mater. Trans. A 45, 3938–3953 (2014). https://doi.org/10.1007/s11661-014-2359-1

    Article  CAS  Google Scholar 

  20. S. Li, B. Gao, S. Yin, G. Tu, G. Zhu, S. Sun, X. Zhu, Appl. Surf. Sci. 357, 2004–2012 (2015). https://doi.org/10.1016/j.apsusc.2015.09.172

    Article  CAS  Google Scholar 

  21. M. Schwarz, A. Karma, K. Eckler, D.M. Herlach, Phys. Rev. Lett. 73, 1380–1383 (1994). https://doi.org/10.1103/PhysRevLett.73.1380

    Article  CAS  Google Scholar 

  22. A.M. Mullis, R.F. Cochrane, J. Appl. Phys. 82, 3783–3790 (1997). https://doi.org/10.1063/1.365740

    Article  CAS  Google Scholar 

  23. H. Wang, F. Liu, C. Yang, J. Mater. Res. 25, 1963–1974 (2010). https://doi.org/10.1557/JMR.2010.0257

    Article  CAS  Google Scholar 

  24. C. Yang, J. Gao, Y.K. Zhang, M. Kolbe, D.M. Herlach, Acta Mater. 59, 3915–3926 (2011). https://doi.org/10.1016/j.actamat.2011.03.016

    Article  CAS  Google Scholar 

  25. H. Yasuda, K. Morishita, N. Nakatsuka, T. Nishimura, M. Yoshiya, A. Sugiyama, K. Uesugi, A. Takeuchi, Nat. Commun. 10, 3183 (2019). https://doi.org/10.1038/s41467-019-11079-y

    Article  CAS  Google Scholar 

  26. Y.B. Park, I.G. Kim, S.G. Kim, W.T. Kim, T.C. Kim, M.S. Oh, J.S. Kim, Metall. Mater. Trans. A 48, 1013–1020 (2017). https://doi.org/10.1007/s11661-016-3947-z

    Article  CAS  Google Scholar 

  27. Ha, T.C. Kim, J.H. Baeg, J.S. Kim, M. Shon, Y.R. Cho, Int. J. Adhes. Adhes. 117, 103182 (2022). https://doi.org/10.1016/j.ijadhadh.2022.103182

  28. S.I. Wright, Texture analysis via EBSD. https://www.youtube.com/watch?v=Y8VTSt8Paa0. Accessed 20 Jan 2023

  29. S.G. Kim, J.Y. Huh, G.J. Chung, H.S. Hwang, S.H. Kim, Metall. Mater. Trans. A 50, 3186–3200 (2019). https://doi.org/10.1007/s11661-019-05263-4

    Article  CAS  Google Scholar 

  30. B. Hutchinson, J. Komenda, S. Kada, M. Barnett, A. Oskarsson, Scripta Mater. 166, 78–80 (2019). https://doi.org/10.1016/j.scriptamat.2019.03.012

    Article  CAS  Google Scholar 

  31. J.G. Antonopoulos, Th. Karakostas, Ph. Komniou, P. Delavignette, Acta Metall. 36, 2493–2502 (1988). https://doi.org/10.1016/0001-6160(88)90195-2

    Article  CAS  Google Scholar 

  32. M. Li, T. Ishikawa, K. Nagashio, K. Kuribayashi, K. Yoda, Acta Mater. 54, 3791–3799 (2006). https://doi.org/10.1016/j.actamat.2006.04.010

    Article  CAS  Google Scholar 

  33. A. Sémoroz, S. Henry, M. Rappaz, Metall. Mater. Trans. A 31, 487–495 (2000). https://doi.org/10.1007/s11661-000-0284-y

    Article  Google Scholar 

  34. D.M. Herlach, E. Eckler, A. Karma, M. Schwarz, Mater. Sci. Eng. A 304–306, 20–25 (2001). https://doi.org/10.1016/S0921-5093(00)01553-7

    Article  Google Scholar 

  35. H. Wang, F. Liu, Y. Tan, Acta Mater. 59, 4787–4797 (2011). https://doi.org/10.1016/j.actamat.2011.04.021

    Article  CAS  Google Scholar 

  36. T. Cool, P.W. Voorhees, Phil. Trans. R. Soc. A 376, 20170213 (2018). https://doi.org/10.1098/rsta.2017.0213

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the technical and financial support provided by POSCO. This work was also partially supported by the Material Component Technology Development Project (No. 20012941) funded by the Ministry of Trade, Industry and Energy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Youl Huh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, DJ., Choi, J., Kim, TC. et al. Grain Refinement with Remarkable Basal Texture of Hot-Dipped Zn–Al–Mg Alloy Coating on a Steel Sheet: Evidence of Dendrite Fragmentation. Met. Mater. Int. 29, 3566–3574 (2023). https://doi.org/10.1007/s12540-023-01463-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01463-1

Keywords

Navigation