Skip to main content
Log in

Gradient Nanotwinned Structure and Its Formation Mechanism in Inconel 625 Alloy Produced by Surface Mechanical Grinding Treatment

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Effects of surface mechanical grinding treatment on the structure evolution and grain refinements of gradient structured surface layer on Inconel 625 have been studied. The results showed that a 600 μm thick gradient nanotwinned (GNT) structure layer could be successfully constructed in the superficial layer of the alloy by adjusting the process parameters. The TEM characterization revealed that a gradient change from nano-grain and nanotwinned to dislocation structure was formed in the alloy structure, and the grain size of the outermost layer of the alloy could be refined to 18 nm, with a thickness of up to 30 μm and a surface hardness of 7.4 GPa. In addition, with an increase in the layer depth, twinning played a major role in the refinement. Firstly, a high-density twin/matrix lamellar structure was formed in the microstructure at high strain rates during the process of plastic-induced grain refinement, and the original coarse grains were refined. During further deformation, due to the increasing difficulty of work hardening and the reactions between dislocations and twin boundaries, the lamellar structure was sheared and broken into equiaxed nanocrystals. Finally, the nanocrystals were further refined to a smaller size through twinning. During this process, twinning is more likely to occur for a grain size of 71–80 nm. These findings shed light on the basic principle of GNT construction, especially the twinning induced grain refinement mechanism under different grain sizes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper.

References

  1. X.Y. Li, K. Lu, Nat. Mater. 16, 700–701 (2017)

    Article  CAS  Google Scholar 

  2. L. Yang, X.Y. Li, K. Lu, Acta Metall. 53, 1413–1417 (2017)

    CAS  Google Scholar 

  3. X.Y. Li, K. Lu, Science 364, 733–734 (2019)

    Article  CAS  Google Scholar 

  4. L. Lu, X. Chen, X. Huang, K. Lu, Science 323, 607–610 (2009)

    Article  CAS  Google Scholar 

  5. O. Bouaziz, S. Allain, C. Scott, Scr. Mater. 58, 484–487 (2008)

    Article  CAS  Google Scholar 

  6. B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142, 283–362 (2018)

    Article  Google Scholar 

  7. K.I. Sugimoto, M. Kobayashi, S.-I. Hashimoto, Metall. Trans. A 23, 3085–3091 (1992)

    Article  Google Scholar 

  8. R.J. Ji, Z.L. Yang, H. Jin, Y.H. Liu, H.Y. Wang, Q. Zheng, W.H. Cheng, B.P. Cai, X.P. Li, Surf. Coat. Technol. 375, 292–302 (2019)

    Article  CAS  Google Scholar 

  9. E. Maleki, O. Unal, M. Guagliano, S. Bagherifard, Met. Mater. Int. 28, 112–131 (2022)

    Article  CAS  Google Scholar 

  10. B. Song, H.Z. Zhao, L.J. Chai, N. Guo, H.C. Pan, H.B. Chen, R.L. Xin, Met. Mater. Int. 22, 887–896 (2016)

    Article  Google Scholar 

  11. N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, Acta Mater. 50, 4603–4616 (2002)

    Article  CAS  Google Scholar 

  12. K. Wang, N.R. Tao, G. Liu, J. Lu, K. Lu, Acta Mater. 54, 5281–5291 (2006)

    Article  CAS  Google Scholar 

  13. H.W. Huang, Z.B. Wang, J. Lu, K. Lu, Acta Mater. 87, 150–160 (2015)

    Article  CAS  Google Scholar 

  14. W.L. Li, N.R. Tao, K. Lu, Scr. Mater. 59, 546–549 (2008)

    Article  CAS  Google Scholar 

  15. T.H. Fang, N.R. Tao, K. Lu, Science 331, 1587–1590 (2011)

    Article  CAS  Google Scholar 

  16. X.C. Liu, H.W. Zhang, K. Lu, Acta Mater. 96, 24–36 (2015)

    Article  CAS  Google Scholar 

  17. B.S. Xu, Nano Surface Engineering (Chemical Industry Press, Beijing, 2004)

    Google Scholar 

  18. Y.B. Gao, Y.T. Ding, J.J. Chen, J.Y. Xu, X.M. Wang, Mater. Sci. Eng. A 767, 138361 (2019)

    Article  CAS  Google Scholar 

  19. R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, A. Bachmaier, Annu. Rev. Mater. Res. 40, 319–343 (2010)

    Article  CAS  Google Scholar 

  20. R. Pippan, F. Wetscher, M. Hafok, A. Vorhauer, I. Sabirov, Adv. Eng. Mater. 8, 1046–1056 (2006)

    Article  CAS  Google Scholar 

  21. X.C. Liu, H.W. Zhang, K. Lu, Science 342, 337–340 (2013)

    Article  CAS  Google Scholar 

  22. N.R. Tao, X.L. Wu, M.L. Sui, J. Lu, K. Lu, J. Mater. Res. 19, 1623–1629 (2004)

    Article  CAS  Google Scholar 

  23. H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, K. Lu, Acta Mater. 51, 1871–1881 (2003)

    Article  CAS  Google Scholar 

  24. R.P. Singh, R.D. Doherty, Metall. Trans. A 23, 307–319 (1992)

    Article  Google Scholar 

  25. F.D. Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, E.V. Pereloma, Acta Mater. 52, 4819–4832 (2004)

    Article  Google Scholar 

  26. N. Hansen, X. Huang, Acta Mater. 46, 1827–1836 (1998)

    Article  CAS  Google Scholar 

  27. X.Z. Liao, Y.H. Zhao, Y.T. Zhu, R.Z. Valiev, D.V. Gunderov, J. Appl. Phys. 96, 636–640 (2004)

    Article  CAS  Google Scholar 

  28. Y.S. Li, N.R. Tao, K. Lu, Acta Mater. 56, 230–241 (2008)

    Article  CAS  Google Scholar 

  29. B.E. Warren, X-Ray Diffraction (Addison-Wesley, Reading, 1969)

    Google Scholar 

  30. Y.H. Zhao, H.W. Sheng, K. Lu, Acta Mater. 49, 365–375 (2001)

    Article  CAS  Google Scholar 

  31. G.K. Williamson, R.E. Smallman III., Philos. Mag. 1, 34–46 (1956)

    Article  CAS  Google Scholar 

  32. J.A. Venables, Philos. Mag. 6, 379–396 (1961)

    Article  CAS  Google Scholar 

  33. S. Ni, Y.B. Wang, X.Z. Liao, R.B. Figueiredo, H.Q. Li, S.P. Ringer, T.G. Langdon, Y.T. Zhu, Acta Mater. 60, 3181–3189 (2012)

    Article  CAS  Google Scholar 

  34. Z. Feng, X. Luo, Y. Chen, N. Chen, L. Zhang, G. Wu, X. Huang, Mater. Sci. Eng. A 771, 138486 (2020)

    Article  CAS  Google Scholar 

  35. K.P.D. Lagerlof, J. Castaing, P. Pirouz, A.H. Heuer, Philos. Mag. A 82, 2841–2854 (2002)

    Article  CAS  Google Scholar 

  36. J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd edn. (Krieger Publishing, Malabar, 1992)

    Google Scholar 

  37. Y.T. Zhu, X.Z. Liao, X.L. Wu, Prog. Mater. Sci. 57, 1–62 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Xiuyan Li, Baobing Zhang and Chen Liang for data analysis and experimental processing. In addition, this work was financially supported by the National Key Research and Development Program of China (Grant No. 2017YFA07007003) and the National Natural Science Foundation of China (Grant No. 51661019), the program for Major Projects of Science and Technology in Gansu Province (Grant No. 145RTSA004), and the Hongliu first-class discipline construction plan of Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutian Ding.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Ding, Y., Gao, Y. et al. Gradient Nanotwinned Structure and Its Formation Mechanism in Inconel 625 Alloy Produced by Surface Mechanical Grinding Treatment. Met. Mater. Int. 29, 1454–1468 (2023). https://doi.org/10.1007/s12540-022-01297-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01297-3

Keywords

Navigation