Skip to main content
Log in

Influence of Heat Treatment on the Microstructure and Hardness of 17-4PH Stainless Steel Fabricated Through Direct Energy Deposition

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

AISI 630 stainless steel (ASTM A564-89, 17-4PH) is widely used in die-casting molds owing to its excellent wear and heat resistance. Recently, a cooling strengthening technology that densifies the microstructure of the casting through rapid cooling has been developed. Additive manufacturing can be used to fabricate casting molds with complex three-dimensional cooling channels. 17-4PH stainless steel, a martensitic precipitation hardening steel, can be subjected to heat treatment to improve its mechanical properties, which are highly dependent on its microstructure. Specifically, the formation of martensite and δ-ferrite, and the coarsening of Cu-rich precipitates considerably decreases the hardness of 17-4PH stainless steel. In this study, we investigate the microstructural evolution of 17-4PH stainless steel during aging and solution heat treatment processes and determine their effect on the formation of martensite and δ-ferrite. Furthermore, the effect of heat treatment on the microstructure and hardness of the steel is studied experimentally. Accordingly, three specimens—as-built, H-1150-M (aging heat treatment), and SH-1150-M (solution and aging heat treatment)—were analyzed and compared herein. The results revealed that the martensite fraction was the highest in the aged H-1150-M specimen, resulting in a high hardness. In contrast, in the SH-1150-M specimen, the austenite and δ-ferrite fractions were higher than the martensite fraction, resulting in a lower hardness than those of the other two specimens. Therefore, aging heat treatment without solution heat treatment can effectively increase the hardness of additively manufactured 17-4PH stainless steel.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Wang, J. Zhang, W. Zhou, W. Xia, W.J. Deng, Adv. Mech. Eng. (2016). https://doi.org/10.1177/1687814016665745

    Article  Google Scholar 

  2. J. Burja, B. Šuler, A. Nagode, Materwiss. Werkst. 50, 405 (2019). https://doi.org/10.1002/mawe.201800045

    Article  CAS  Google Scholar 

  3. J.D. Bressan, D.P. Daros, A. Sokolowski, R.A. Mesquita, C.A. Barbosa, J. Mater. Process. Tech. 205, 353 (2008). https://doi.org/10.1016/j.jmatprotec.2007.11.251

    Article  CAS  Google Scholar 

  4. M. Lara-Banda, C. Gaona-Tiburcio, P. Zambrano-Robledo, M. Delgado-E, J.A. Cabral-Miramontes, D. Nieves-Mendoza, E. Maldonado-Bandala, F. Estupiñan-López, J.G. Chacón-Nava, F. Almeraya-Calderón, Materials 13, 2836 (2020). https://doi.org/10.3390/ma13122836

    Article  CAS  Google Scholar 

  5. M. Raza, R. Svenningsson, M. Irwin, Metall. Foundry Eng. 41, 85 (2015). https://doi.org/10.7494/mafe.2015.41.2.85

    Article  CAS  Google Scholar 

  6. P. Ponnusamy, Basant Sharma, S.H. Masood, R.A. Rahman Rashid, Riyan Rashid, S. Palanisamy, D. Ruan, Mater. Today Proc. 45, 4531 (2021). https://doi.org/10.1016/j.matpr.2020.12.1104

    Article  CAS  Google Scholar 

  7. K. Zhuang, X. Zhang, D. Zhu, H. Ding, Int. J. Adv. Manuf. Technol. 80, 1815 (2015). https://doi.org/10.1007/s00170-015-7153-8

    Article  Google Scholar 

  8. J.K. Kuo, P.H. Huang, H.Y Lai, J. Adv. Manuf. Technol. 92, 1093 (2017). https://doi.org/10.1007/s00170-017-0198-0

  9. ASTM A564/A564M-13, Standard Specification for Hot-Rolled and Cold-Finished Age-Hardening Stainless Steel Bars and Shapes (ASTM International, West Conshohocken, 2017)

  10. C. Feng, L. Zhang, J. Wu, H. Yu, Mater. Res. Express 7, 046503 (2020). https://doi.org/10.1088/2053-1591/ab815f

    Article  CAS  Google Scholar 

  11. M.S. Rizi, H. Minouei, B.J. Lee, H. Pouraliakbar, M.R. Toroghinejad, S.I. Hong, Mater. Sci. Eng. A 824, 141803 (2021). https://doi.org/10.1016/j.msea.2021.141803

    Article  CAS  Google Scholar 

  12. M. Saboktakin Rizi, H. Minouei, B.J. Lee, M.R. Toroghinejad, S.I. Hong, J. Alloys Compd. 911, 165108 (2022). https://doi.org/10.1016/j.jallcom.2022.165108

    Article  CAS  Google Scholar 

  13. Y. Sun, R.J. Hebert, M. Aindow, Mater. Des. 156, 429 (2018). https://doi.org/10.1016/j.matdes.2018.07.015

    Article  CAS  Google Scholar 

  14. Y. Sun, R.J. Hebert, M. Aindow, Mater. Des. 140, 153 (2018). https://doi.org/10.1016/j.matdes.2017.11.063

    Article  CAS  Google Scholar 

  15. R. Sowa, A. Kowal, E. Roga, S. Arabasz, A. Dziedzic, I. Dul, M. Parlinska-Wojtan, Zastita Materijala 56, 261 (2015). https://doi.org/10.5937/zasmat1503261s

    Article  Google Scholar 

  16. J.L. Tian, W. Wang, W. Yan, Z. Jiang, Y. Shan, K. Yang, J. Iron Steel Res. Int. 24, 718 (2017). https://doi.org/10.1016/S1006-706X(17)30108-5

    Article  Google Scholar 

  17. N. Kwabena Adomako, S.H. Kim, J.H. Yoon, S.-H. Lee, J.H. Kim, Metals 11, 629 (2021). https://doi.org/10.3390/met11040629

    Article  CAS  Google Scholar 

  18. D. Guo, K. Yan, M.D. Callaghan, D. Daisenberger, M. Chatterton, J. Chen, A. Wisbey, W. Mirihanage, Mater. Des. 207, 109782 (2021). https://doi.org/10.1016/j.matdes.2021.109782

    Article  CAS  Google Scholar 

  19. G. Yeli, M.A. Auger, K. Wilford, G.D.W. Smith, P.A.J. Bagot, M.P. Moody, Acta Mater. 125, 38 (2017). https://doi.org/10.1016/j.actamat.2016.11.052

    Article  CAS  Google Scholar 

  20. T. LeBrun, T. Nakamoto, K. Horikawa, H. Kobayashi, Mater. Des. 81, 44 (2015). https://doi.org/10.1016/j.matdes.2015.05.026

    Article  CAS  Google Scholar 

  21. N.K. Adomako, J.O. Kim, J.H. Kim, Mater. Sci. Eng. A 753, 208 (2019). https://doi.org/10.1016/j.msea.2019.03.036

    Article  CAS  Google Scholar 

  22. B. Zheng, J.C. Haley, N. Yang, J. Yee, K.W. Terrassa, Y. Zhou, E.J. Lavernia, J.M. Schoenung, Mater. Sci. Eng. A 764, 138243 (2019). https://doi.org/10.1016/j.msea.2019.138243

    Article  CAS  Google Scholar 

  23. S. Vunnam, A. Saboo, C. Sudbrack, T.L. Starr, Addit. Manuf. 30, 100876 (2019). https://doi.org/10.1016/j.addma.2019.100876

    Article  CAS  Google Scholar 

  24. S.D. Meredith, J.S. Zuback, J.S. Keist, T.A. Palmer, Mater. Sci. Eng. A 738, 44 (2018). https://doi.org/10.1016/j.msea.2018.09.066

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Technology Innovation Program (Grant No. 20013122; Development of manufacturing technology for casting molds with 3D cooling channels to improve the quality and productivity of automobile parts) funded by the Ministry of Trade, Industry, and Energy (MOTIE), Republic of Korea. This work was also supported by the Korea Institute for Advancement of Technology (KIAT), funded by the Ministry of Trade, Industry, and Energy (MOTIE), Republic of Korea (Grant No. P0002019; Human Resource Development Program for Industrial Innovation).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marzieh Ebrahimian or Jeoung Han Kim.

Ethics declarations

Conflict of interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choo, W., Ebrahimian, M., Choi, K. et al. Influence of Heat Treatment on the Microstructure and Hardness of 17-4PH Stainless Steel Fabricated Through Direct Energy Deposition. Met. Mater. Int. 29, 1750–1760 (2023). https://doi.org/10.1007/s12540-022-01333-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01333-2

Keywords

Navigation