Skip to main content
Log in

Effect of Cooling Rate on Magnetic Properties of Fe-3.3 wt% Si Non-oriented Electrical Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this paper, the effects of solidification cooling rate on the inclusion distribution, magnetic properties, and texture of 3.3 wt% Si non-oriented steel with different carbon and sulfur (C&S) levels are measured and analyzed. Fast and slow cooled strip samples produced using specially designed melt samplers were thermo-mechanically treated by hot rolling (HR), cold rolling (CR), and final annealing. The fully processed fast cooled sample (~ 1700 K/s) exhibited a smaller average grain size compared to the sample produced with a low solidification cooling rate (~ 9 K/s). In addition, under each C&S level, smaller inclusions (in the range 0.15–1.0 μm) were observed in the high solidification cooling rate sample. Differences in Cube {100}〈001〉, S{213}〈364〉, Brass{110}〈112〉, Goss{110}〈001〉, and Copper{112}〈111〉 texture were also documented in the fully processed material. Under each C&S level, the sample with low solidification cooling rate had a lower core loss than the high cooling rate sample.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. Hong, H. Choi, S. Lee, J.K. Kim, Y. Mo Koo, J. Magn. Magn. Mater. 439, 343 (2017)

    Article  CAS  Google Scholar 

  2. Y. Du, R.J. O’Malley, M.F. Buchely, M. Xu, in AISTech 2021 — Proceedings of the Iron & Steel Technology Conference, Nashville, 29 June–1 July 2021 (Association for Iron & Steel Technology, Warrendale, 2021), p. 483

    Article  Google Scholar 

  3. M.F. De Campos, J.C. Teixeira, F.J.G. Landgraf, J. Magn. Magn. Mater. 301, 94 (2006)

    Article  Google Scholar 

  4. G. Ouyang, X. Chen, Y. Liang, C. Macziewski, J. Cui, J. Magn. Magn. Mater. 481, 234 (2019)

    Article  CAS  Google Scholar 

  5. Y. Luo, A.N. Conejo, L. Zhang, L. Chen, L. Cheng, Metall. Mater. Trans. B 46, 2348 (2015)

    Article  CAS  Google Scholar 

  6. Y. He, E. Hilinski, J. Li, Metall. Mater. Trans. A 46, 5350 (2015)

    Article  CAS  Google Scholar 

  7. A. Suzuki, T. Suzuki, Y. Nagaoka, Y. Iwata, J. Jpn. Inst. Met. 32, 1301 (1968)

    CAS  Google Scholar 

  8. ASTM E112-13, Standard Test Methods for Determining Average Grain Size (ASTM International, West Conshohocken, 2013)

  9. ASTM A1036-04, Standard Guide for Measuring Power Frequency Magnetic Properties of Flat-Rolled Electrical Steels Using Small Single Sheet Testers (ASTM International, West Conshohocken, 2020)

  10. J. Füzer, Z Birčáková, A. Zeleňáková, P. Hrubovčák, P. Kollár, M. Predmerský, J. Huňady, Acta Phys. Pol. A 118, 1018 (2010)

    Article  Google Scholar 

  11. GB/T 2521.1–2016, Cold-rolled electrical steel delivered in the fully-processed state - Part 1: Grain non-oriented steel strip(sheet) (GB standards, Shenzhen, 2016)

  12. J. Wang, Q. Ren, Y. Luo, L. Zhang, J. Magn. Magn. Mater. 451, 454 (2018)

    Article  CAS  Google Scholar 

  13. M. Shiozaki, Y. Kurosaki, J. Mater. Eng. 11, 37 (1989)

    Article  CAS  Google Scholar 

  14. Y. Liu, X. Zhang, P. Wang, D. Li, Metall. Mater. Trans. B 51, 22 (2020)

    Article  CAS  Google Scholar 

  15. Q. Ren, W. Yang, L. Cheng, L. Zhang, A.N. Conejo, Metall. Mater. Trans. B 51, 200 (2020)

    Article  CAS  Google Scholar 

  16. S. Tripathy, S.G. Chowdhury, Sci. Rep. 11, 4912 (2021)

    Article  Google Scholar 

  17. H. Jiao, Y. Xu, L. Zhao, R.D.K. Misra, Y. Tang, D. Liu, Y. Hu, M. Zhao, M. Shen, Acta Mater. 199, 311 (2020)

    Article  CAS  Google Scholar 

  18. N. Shan, J. Liu, Y. Sha, F. Zhang, L. Zuo, Metall. Mater. Trans. A 50, 2486 (2019)

    Article  CAS  Google Scholar 

  19. H.-T. Liu, Z.-Y. Liu, Y.-Q. Qiu, Y. Sun, G.-D. Wang, J. Mater. Process. Tech. 212, 1941 (2012)

    Article  CAS  Google Scholar 

  20. J.J. Sidor, K. Verbeken, E. Gomes, J. Schneider, P.R. Calvillo, L.A.I. Kestens, Mater. Charact. 71, 49 (2012)

    Article  CAS  Google Scholar 

  21. N. Zhang, P. Yang, W. Mao, Mater. Charact. 119, 225 (2016)

    Article  CAS  Google Scholar 

  22. T. Takaki, S. Sakane, M. Ohno, Y. Shibuta, T. Aoki, C.-A. Gandin, Materialia 1, 104 (2018)

    Article  CAS  Google Scholar 

  23. S.H. Lee, D.N. Lee, Int. J. Mech. Sci. 43, 1997 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The research was performed at Missouri University of Science and Technology (Missouri S&T). The authors would like to thank the graduate research assistants in MSE for their assistance during casting trials and acknowledge Brian Bullock for his help with the setup and manufacture of the samplers. The authors are also grateful to all the faculties and industry mentoring committee of Peaslee Steel Manufacturing Research Center (PSMRC) at Missouri University of Science and Technology (Missouri S&T), for their help and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhou Du.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., O’Malley, R.J. & Buchely, M.F. Effect of Cooling Rate on Magnetic Properties of Fe-3.3 wt% Si Non-oriented Electrical Steel. Met. Mater. Int. 28, 3160–3171 (2022). https://doi.org/10.1007/s12540-022-01184-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01184-x

Keywords

Navigation