Skip to main content
Log in

Effect of Superheat, Cooling Rate, and Refractory Composition on the Formation of Non-metallic Inclusions in Non-oriented Electrical Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The magnetic properties of electrical steels are improved with additions of silicon and aluminum; however, these elements also promote the formation of non-metallic inclusions. The presence of non-metallic inclusions in electrical steels severely affects its magnetic properties. In this work, the effect of cooling rate, superheat, and refractory composition on the formation of non-metallic inclusions has been investigated. The evolution in chemical composition has been reported using a new representation employing pseudo-quinary phase diagrams. It has been found that the concentration of MnO in the non-metallic inclusions plays a big role to control its population density. A critical value has been identified above which it is possible to achieve a large decrease in the total number of non-metallic inclusions in electrical steels, in addition to this, it was also possible to define the influence of cooling rate, superheat, and refractory chemical composition on the composition and population density of non-metallic inclusions. It was found that increasing cooling rate and a change of crucible from alumina-based to MgO-based, both increase the population density of NMI, on the contrary, superheat decreases the population density, depending on the concentration of MnO in the inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H. Zhang, B. Johansson, R. Ahuja, L. Vitos: Comput. Mater. Sci. 2012, 55:269–272.

    Article  Google Scholar 

  2. J-T. Park, J.A. Szpunar. J. Magn. Magn. Mater. 2009, 321(13): 1928-1932.

    Article  Google Scholar 

  3. MF De Campos, JC Teixeira, FJG Landgraf: J. Magn. Magn. Mater., 2006, 301(1): 94–99.

    Article  Google Scholar 

  4. K Matsumura, B Fukuda: IEEE Trans. Magn. 1984, 20(5):1533–38.

    Article  Google Scholar 

  5. Ueshima Y, Sawada Y, Mizoguchi S, Kajioka H (1988) Metall. Trans. A, 20:1989–75.

    Google Scholar 

  6. Z.Liu, J. Wei, K. Cai: ISIJ Int. 2002, 42: 958–63.

    Article  Google Scholar 

  7. Yosuke Kurosaki, Morio Shiozaki, Kazutaka Higashine, M Sumimoto: ISIJ Int. 1999, 39: 607–613.

    Article  Google Scholar 

  8. Z. Feng, M. Changsong, W. Bo, Z. Peili, M. Zhigang, Z. Yi: Baosteel Technol. Res. 2011, 5: 41–45.

    Google Scholar 

  9. Feng Z., Lede M., Zhenyu Z., Bo W., Yi Z., Zhigang M. Baosteel Technol. Res. 2013, 7:12–19.

    Google Scholar 

  10. L. Zhang, B.G. Thomas .ISIJ Int. 2003, 43: 271–291.

    Article  Google Scholar 

  11. P. Von Schweinichen, Z. Chen, D. Senk, A. Lob: Metall. Mater. Trans. A, 2013, 44: 5416–23.

    Article  Google Scholar 

  12. H. Goto, K.-I. Miyazawa, W. Yanmada, K. Tanaka: ISIJ Int. 1995, 35: 708–714.

    Article  Google Scholar 

  13. H. Goto, K. Miyazawa, K. Yamaguchi, S. Ogibayashi, K. Tanaka. ISIJ Int. 1994, 34: 414–19.

    Article  Google Scholar 

  14. R. Diederichs, W. Bleck: Steel Res. Int. 2006, 77:202–09.

    Google Scholar 

  15. M El-Bealy, BG Thomas: Metall. Mater. Trans. B, 1996, 27: 689–93.

    Article  Google Scholar 

  16. B.L. Bramfitt and A.O. Benscoter: Metallographer’s Guide-Practices and Procedures for Iron and Steels, 2006.

  17. C.W. Yang, N. B. Lv, X.J. Zhuo, X. Wang, W. Wang: Iron Steel, 2010, 45: 34–36.

    Article  Google Scholar 

  18. F. Schamber: Introduction to Automated Particle Analysis by Focused Electron Beam, Corporation, Editor 2009.

  19. V. Singh, S.N. Lekakh, and K.D. Peaslee: SFSA Technical and Operating Conference[C]. Steel Founders’ Society of America, 2008.

  20. R. L. Fullman: Trans. AIME, 1953, 197:447–52.

    Google Scholar 

  21. E. Zinngrebe, P. Seda, C. Van Hoek, B. Van Arendonk: ISIJ Int., 2013, 53(11): 1913–22.

    Article  Google Scholar 

  22. P. Rocabois, J. Lehmann, H. Gaye, M. Wintz: J. Cryst. Growth, 1999, 198:838–43.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Science Foundation China (Grant No. 51274034, No. 51334002, and No. 51404019), State Key Laboratory of Advanced Metallurgy, Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), the Laboratory of Green Process Metallurgy and Modeling (GPM2) and the High Quality steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Additional information

Manuscript submitted May 24, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Conejo, A.N., Zhang, L. et al. Effect of Superheat, Cooling Rate, and Refractory Composition on the Formation of Non-metallic Inclusions in Non-oriented Electrical Steels. Metall Mater Trans B 46, 2348–2360 (2015). https://doi.org/10.1007/s11663-015-0401-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0401-3

Keywords

Navigation