Skip to main content
Log in

Microstructure Evolution, Mechanical Properties and Strain Hardening Instability of Low and Medium Carbon Quenching & Partitioning Steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effect of quenching after martensitic finish (QAMf) or quenching & partitioning (Q&P) on microstructure evolution, mechanical properties, and strain hardening instability of low and medium carbon hot rolled steels were investigated. Two heats of low and medium carbon steels were cast in an induction open furnace. The chemical composition of low carbon steel is 0.16C–0.27Si–1.47Mn–0.02Al while medium carbon steel is 0.49C–0.30Si–0.91Mn–0.03Al. They were hot-rolled at 1200 °C for 30 min followed by air cooling. The microstructure after hot-rolled gives bands of ferrite and pearlite for 0.16 wt% low carbon steel. On the other hand, 0.49 wt% medium carbon steel produces coarse pearlite islands surrounded by ferrite phase. To enhance mechanical properties, it was necessary to modify the microstructure of low and medium carbon steels using QAMf or Q&P processes. The resultant matrix of microstructure after QAMf and Q&P processes contained ferrite, bainite, lath martensite, and retained austenite for 0.16 wt% low carbon steel, and polygonal ferrite, lath martensite, and retained austenite for 0.49 wt% medium carbon steel, respectively. In low carbon steel, QAMf process increased uniform elongation from 6.6 to 13.5% (105% increase) while ultimate tensile strength (UTS) improved slightly from 645 to 692 MPa (7% increase). However, in medium carbon steel, Q&P reduced uniform elongation from 12.4 to 4.8% (61% decrease) while increased UTS from 769 to 1242 MPa (61.5% increase). It is worthy to mention that QAMf process exhibited strain hardening instability zone (7.8% strain before necking) compared to hot-rolled process (0% strain before necking). On the other hand, Q&P process highly decreased strain hardening instability zone (0.77% strain before necking) compared to hot-rolled process (3.4% strain before necking).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. N. Saeidi, M. Jafari, J.G. Kim, F. Ashrafizadeh, H.S. Kim, Met. Mater. Int. 26, 168 (2020)

    Article  CAS  Google Scholar 

  2. Z. Changle, F. Hanguang, M. Shengqiang, Y. Dawei, L. Jian, X. Zhenguo, L. Yongping, Mater. Res. Express 6, 086581 (2019)

    Article  Google Scholar 

  3. F. Zhang, Y. Yang, Q. Shan, Z. Li, J. Bi, R. Zhou, Materials 13, 172 (2020) 

  4. J.-K. Hwang, Met. Mater. Int. 26, 603 (2020)

    Article  CAS  Google Scholar 

  5. H.L. Kim, S.H. Bang, J.M. Choi, N.H. Tak, S.W. Lee, S.H. Park, Met. Mater. Int. 26, 1757 (2020)

    Article  CAS  Google Scholar 

  6. K. Sugimoto, S. Sato, J. Kobayashi, A.K. Srivastava, Metals 9, 1066 (2019)

    CAS  Google Scholar 

  7. Y.X. Zhou, X.T. Song, J.W. Liang, Y.F. Shen, R.D.K. Misra, Mater. Sci. Eng. A 718, 267 (2018)

    Article  CAS  Google Scholar 

  8. Y. Lu, J. Yang, J. Xu, Z. Guo, J. Gu, Heat Treat. Surf. Eng. 1, 87 (2019)

    Article  Google Scholar 

  9. G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, B. Bai, Acta Mater. 76, 425 (2014)

    Article  CAS  Google Scholar 

  10. B. Bai, G. Gao, X. Gui, Z. Tan, Y. Yeng, Heat Treat. Surf. Eng. 1, 63 (2019)

    Article  Google Scholar 

  11. J. Zhang, H. Ding, R.D.K. Misra, Mater. Sci. Eng. A 636, 53 (2015)

    Article  CAS  Google Scholar 

  12. J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51, 2611 (2003)

    Article  CAS  Google Scholar 

  13. D.P. Koistinen, R.E. Marburger, Acta Metall. 7, 59 (1959)

    Article  Google Scholar 

  14. M.J. Santofimia, L. Zhao, R. Petrov, J. Sietsma, Mater. Charact. 59, 1758 (2008)

    Article  CAS  Google Scholar 

  15. C.Y. Wang, J. Shi, W.Q. Cao, H. Dong, Mater. Sci. Eng. A 527, 3442 (2010)

    Article  Google Scholar 

  16. E. Abbas, Q. Luo, D. Owens, Acta Metall. Sin. 32, 74 (2019)

    Article  Google Scholar 

  17. M.V. Karavaeva, S.K. Nurieva, N.G. Zaripov, A.V. Ganeev, R.Z. Valiev, Met. Sci. Heat Treat. 54, 155 (2012)

    Article  Google Scholar 

  18. J. Tian, G. Xu, Z. Jiang, H. Hu, Q. Yuan, X. Wan, Met. Mater. Int. 26, 961 (2020)

    Article  CAS  Google Scholar 

  19. L. Wang, J.G. Speer, Metallogr. Microstruct. Anal. 2, 268 (2013)

    Article  Google Scholar 

  20. M.V. Karavaeva, S.K. Kiseleva, M.M. Abramova, A.V. Ganeev, R.Z. Valiev, IOP Conf. Ser. Mater. Sci. 63, 012056 (2014)

    Article  CAS  Google Scholar 

  21. Y. Tian, H. Wang, Y. Li, Z. Wang, G. Wang, Mater. Res. 20, 853 (2017)

    Article  Google Scholar 

  22. H.F. Lan, L.X. Du, R.D.K. Misra, Mater. Sci. Eng. A 611, 194 (2014)

    Article  CAS  Google Scholar 

  23. X.Y. Long, J. Kang, B. Lv, F.C. Zhang, Mater. Design 64, 237 (2014)

    Article  CAS  Google Scholar 

  24. A. Grajcar, K. Radwañski, Mater. Tehnol. 48, 679 (2014)

    Google Scholar 

  25. Y. Xu, X. Tan, X. Yang, Z. Hu, F. Peng, D. Wu, G. Wang, Mater. Sci. Eng. A 607, 460 (2014)

    Article  CAS  Google Scholar 

  26. X. Tan, Y. Xu, X. Yang, Z. Liu, D. Wu, Mater. Sci. Eng. A 594, 149 (2014)

    Article  CAS  Google Scholar 

  27. A.I.Z. Farahat, A.M. Bahgat Gemeal, R.N. Elshaer, J. Fail. Anal. Prev. 16, 86 (2016)

    Article  Google Scholar 

  28. K. Zhang, M. Zhang, Z. Guo, N. Chen, Y. Rong, Mater. Sci. Eng. A 528, 8486 (2011)

    Article  CAS  Google Scholar 

  29. Y.C. Liu, F. Sommer, E.J. Mittemeijer, Acta Mater. 54, 3383 (2006)

    Article  CAS  Google Scholar 

  30. G. Krauss, Steels: Processing, Structure and Performance, 2nd edn. (ASM International, Materials Park, 2015), pp. 68–85

    Google Scholar 

  31. M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels (Market Promotion Department, British Steel Corporation, London, 1977), pp. 46–54

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramadan N. Elshaer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elshaer, R.N., El-Fawakhry, M.K. & Farahat, A.I.Z. Microstructure Evolution, Mechanical Properties and Strain Hardening Instability of Low and Medium Carbon Quenching & Partitioning Steels. Met. Mater. Int. 28, 1433–1444 (2022). https://doi.org/10.1007/s12540-021-01009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01009-3

Keywords

Navigation