Skip to main content
Log in

Microstructure and Charpy Impact Properties of FCAW and SAW Heat Affected Zones of 100 mm Thick Steel Plate for Offshore Platforms

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, heat affected zone (HAZ) specimens were fabricated by applying flux-cored arc welding (FCAW) and submerged arc welding (SAW) processes to steel plate with a thickness of 100 mm and yield strength of 460 MPa for use in offshore platforms. The correlation between microstructure and Charpy absorbed energy was investigated, and fracture mechanisms were analyzed. As distance from the fusion line increases, heat input and cooling rate decrease, making it difficult to form low-temperature transformation microstructures in HAZ specimens and increasing the grain size of quasi-polygonal ferrite. The FCAW process is advantageous for low-temperature transformation microstructures because it has a lower heat input and a faster cooling rate than the SAW process. Plastic deformation and ductile fracture occurred at low temperatures in fine acicular ferrite and quasi-polygonal ferrite regions of HAZ specimens, but brittle fractures occurred in bainitic ferrite, granular bainite, and coarse quasi-polygonal ferrite regions. The unit crack path in the brittle fracture region was similar to the grain size. In other words, as the volume fraction of fine acicular ferrite and quasi-polygonal ferrite increased in HAZ specimens, Charpy absorbed energy at low temperature increased.

Graphic Abstract

  • 100 mm thick steel plate with yield strength of 460 MPa for offshore platforms is fabricated by TMCP.

  • The SAW and FCAW HAZ specimens are consisted of AF, QPF, and small amounts of GB, BF, and secondary phases. Secondary phases are evenly distributed of the HAZ specimens. So the average Charpy absorbed energy at − 20 °C of the SAW and FCAWHAZ are very high at 100 and 230 J, respectively.

  • Plastic deformation occurred around the AF grain, leading to ductile fracture, while brittle fracture occurred without plastic deformation around the BF and GB grains, resulting in long unit crack paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Araki, Atlas for Bainitic Microstructures (ISIJ, Tokyo, 1992), pp. 1−100

    Google Scholar 

  2. H.K.D.H. Bhadeshia, Mater. Sci. Eng. A378, 34 (2004)

    Article  CAS  Google Scholar 

  3. G. Huang, K.M. Wu, Met. Mater Int. 17, 847 (2011)

    Article  CAS  Google Scholar 

  4. C. Yu, T.C. Yang, C.Y. Huang, R.K. Shiue, Metall. Mater. Trans. A 47A, 4777 (2016)

    Article  Google Scholar 

  5. Offshore Standard, Metallic materials, DNV-GL-OS-B101. (DNVGL, Norway, 2015), pp. 1–69

    Google Scholar 

  6. X. Di, M. Tong, C. Li, C. Zhao, D. Wang, Mater. Sci. Eng. A 743, 67 (2019)

    Article  CAS  Google Scholar 

  7. B. Hwang, C.G. Lee, S.J. Kim, Metall. Mater. Trans. A 42A, 717 (2011)

    Article  Google Scholar 

  8. Y.T. Shin, H.W. Lee, Met. Mater Int. 18, 863 (2012)

    Article  CAS  Google Scholar 

  9. J.S. Lee, S.H. Jeong, D.Y. Lim, J.O. Yun, M.H. Kim, Met. Mater Int. 16, 827 (2012)

    Article  Google Scholar 

  10. C. Pandey, M.M. Mahapatra, P. Kumar, A. Giri, Met. Mater Int. 23, 900 (2017)

    Article  CAS  Google Scholar 

  11. Z. Yao, G. Xu, Z. Jiang, J. Tian, Q. Yuan, H. Ma, Met. Mater Int. 25, 1151 (2019)

    Article  CAS  Google Scholar 

  12. Design of Offshore Steel Structures, General-LRFD method, DNVGL-OS-C101 (DNVGL, Norway, 2011), pp. 1–85

    Google Scholar 

  13. J. Moon, S.-J. Kim, C. Lee, Mater. Sci. Eng. A 528, 7658 (2011)

    Article  CAS  Google Scholar 

  14. X. Li, Y. Fan, X. Ma, S.V. Subramanian, C. Shang, Mater. Des. 67, 457 (2015)

    Article  CAS  Google Scholar 

  15. Y. You, C. Shang, L. Chen, S. Subramanian, Mater. Des. 43, 485 (2013)

    Article  CAS  Google Scholar 

  16. V.G. Haugen, B.R.S. Rogne, O.M. Akselsen, C. Thaulow, Mater. Des. 59, 135 (2014)

    Article  CAS  Google Scholar 

  17. I. Kim, H. Nam, M. Lee, D. Nam, Y. Park, N. Kang, Metals 8, 638 (2018). https://doi.org/10.3390/met8080638

    Article  CAS  Google Scholar 

  18. X.J. Di, X. An, F.J. Cheng, D.P. Wang, X.J. Guo, Sci. Technol. Weld. Join. 21, 366 (2016)

    Article  CAS  Google Scholar 

  19. AWS Welding Handbook, Welding process part 1. (American Welding Society, Miami, 1997), pp. 1–680

    Google Scholar 

  20. O.M. Akselsen, J.K. Solberg, O. Grong, Scand. J. Metall. 17, 194 (1988)

    CAS  Google Scholar 

  21. H.U. Hong, J. Weld. Join. 28, 4 (2010)

    Article  Google Scholar 

  22. I. Hwang, H. Yun, D. Kim, M. Kang, Y.-M. Kim, Met. Mater Int. 24, 149 (2018)

    Article  Google Scholar 

  23. I. Tamura, H. Sekine, T. Tanaka, C. Ouchi, Thermomechanical Processing of High-Strength Low-Alloy Steels (Butterworth-Heinemann, Oxford, 1988), pp. 80–100

    Book  Google Scholar 

  24. S.W. Thompson, D.J. Colvin, G. Krauss, Metall. Mater. Trans. A 21A, 1493 (1990)

    Article  CAS  Google Scholar 

  25. G. Krauss, S.W. Thompson, ISIJ Int. 35, 937 (1995)

    Article  CAS  Google Scholar 

  26. H.K.D.H. Bhadeshia, Mater. Sci. Eng. A A378, 34 (2004)

    Article  CAS  Google Scholar 

  27. C. Capdevila, F.G. Caballero, C. Garcia de Andres, ISIJ Int. 42, 894 (2003)

    Article  Google Scholar 

  28. K.W. Andrew, J. Iron Steel Inst. 203, 721 (1965)

    Google Scholar 

  29. C.Y. Kung, J.J. Raymond, Metall. Trans. 13A, 328 (1982)

    Article  CAS  Google Scholar 

  30. H. Ohtani, S. Okaguchi, Y. Fujishiro, Y. Ohmori, Metall. Trans. A 21A, 877 (1990)

    Article  CAS  Google Scholar 

  31. M. Diaz-Fuentes, A. Iza-Mendia, I. Gutierrez, Metall. Mater. Trans. A 34A, 2505 (2003)

    Article  CAS  Google Scholar 

  32. Y.M. Kim, S.Y. Shin, H. Lee, B. Hwang, S. Lee, N.J. Kim, Metall. Mater. Trans. 38A, 1731 (2007)

    Article  CAS  Google Scholar 

  33. D. Deng, S. Kiyoshima, Comput. Mater. Sci. 62, 23 (2012)

    Article  Google Scholar 

  34. H. Qiu, M. Enoki, Y. Kawaguchi, T. Kishi, ISIJ Int. 40, 34 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Korea Evolution Institute of Industrial Technology (KEIT) grant funded by the Korean government (MOTIE) (No. 10063532, Development of steel application technologies against ice-induced crashworthiness and arctic temperature high toughness). This work was partly supported by a Korea Institute for Advancement of Technology (KIAT) grant funded by the Korean government (MOTIE) (No. P0002007, The Competency Development Program for Industry Specialist).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soong-Keun Hyun or Sang Yong Shin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, D., Lee, H., Cho, SK. et al. Microstructure and Charpy Impact Properties of FCAW and SAW Heat Affected Zones of 100 mm Thick Steel Plate for Offshore Platforms. Met. Mater. Int. 26, 867–881 (2020). https://doi.org/10.1007/s12540-020-00626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00626-8

Keywords

Navigation