Skip to main content
Log in

High Temperature Deformation Behavior of Al–Zn–Mg-Based New Alloy Using a Dynamic Material Model

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

High temperature compression tests for newly developed Al–Zn–Mg alloy were carried out to investigate its hot deformation behavior and obtain deformation processing maps. In the compression tests, cylindrical specimens were deformed at high temperatures (300–500 °C) and strain rates of 0.001–1/s. Using the true stress–true strain curves obtained from the compression tests, processing maps were constructed by evaluating the power dissipation efficiency map and flow instability map. The processing map can be divided into three areas according to the microstructures of the deformed specimens: instability area with flow localization, instability area with mixed grains, and stable area with homogeneous grains resulting from continuous dynamic recrystallization (CDRX). The results suggest that the optimal processing conditions for the Al–Zn–Mg alloy are 450 °C and a strain rate of 0.001/s, having a stable area with homogeneous grains resulting from CDRX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Miller, L. Zhuang, J. Bottema, A. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Mater. Sci. Eng. A 280, 37 (2000)

    Article  Google Scholar 

  2. M. Kleiner, S. Chatti, A. Klaus, J. Mater. Process. Technol. 177, 2 (2006)

    Article  CAS  Google Scholar 

  3. M. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, H. Abedi, Mater. Des. 32, 2339 (2011)

    Article  CAS  Google Scholar 

  4. W. Lee, W. Sue, C. Lin, C. Wu, J. Mater. Process. Technol. 100, 116 (2000)

    Article  Google Scholar 

  5. E. Di Russo, M. Conserva, M. Buratti, F. Gatto, Mater. Sci. Eng. 14, 23 (1974)

    Article  Google Scholar 

  6. H. Zhang, N. Jin, J. Chen, Trans. Nonferrous Metals Soc. China 21, 437 (2011)

    Article  CAS  Google Scholar 

  7. Y. Jia, F. Cao, S. Guo, P. Ma, J. Liu, J. Sun, Mater. Des. 53, 79 (2014)

    Article  CAS  Google Scholar 

  8. M. Gavgali, B. Aksakal, Mater. Sci. Eng. A 254, 189 (1998)

    Article  Google Scholar 

  9. Y. Prasad, H. Gegel, S. Doraivelu, J. Malas, J. Morgan, K. Lark, D. Barker, Metall. Trans. A 15, 1883 (1984)

    Article  Google Scholar 

  10. O. Sivakesavam, Y. Prasad, Mater. Sci. Eng. A 362, 118 (2003)

    Article  Google Scholar 

  11. Y. Prasad, K. Rao, Mater. Sci. Eng. A 391, 141 (2005)

    Article  Google Scholar 

  12. Y. Prasad, T. Seshacharyulu, Mater. Sci. Eng. A 243, 82 (1998)

    Article  Google Scholar 

  13. J. Jia, K. Zhang, L. Liu, F. Wu, J. Alloys Compd. 600, 215 (2014)

    Article  CAS  Google Scholar 

  14. V. Balasubrahmanyam, Y. Prasad, Mater. Sci. Eng. A 336, 150 (2002)

    Article  Google Scholar 

  15. J. Yeom, I. Shim, N. Park, S. Hong, I. Shim, Trans. Mater. Process. 12, 566–571 (2003)

  16. B. Guo, H. Ji, X. Liu, L. Gao, R. Dong, M. Jin, Q. Zhang, J. Mater. Eng. Perform. 21, 1455 (2012)

    Article  CAS  Google Scholar 

  17. P. Sivaprasad, S. Mannan, Y. Prasad, R. Chaturvedi, Mater. Sci. Technol. 17, 545 (2001)

    Article  CAS  Google Scholar 

  18. H. Liao, Y. Wu, K. Zhou, J. Yang, Mater. Des. 65, 1091 (2015)

    Article  CAS  Google Scholar 

  19. S. Yu, K. Jeon, M. Kim, J. Lee, K. Ryu, Metals Mater. Int. 23, 639 (2017)

    Article  CAS  Google Scholar 

  20. Y. Lin, L. Li, Y. Xia, Y. Jiang, J. Alloys Compd. 550, 438 (2013)

    Article  CAS  Google Scholar 

  21. M. Rajamuthamilselvan, S. Ramanathan, J. Alloys Compd. 509, 948 (2011)

    Article  CAS  Google Scholar 

  22. N. Petch, Philos. Mag. 3, 1089 (1958)

    Article  Google Scholar 

  23. T. Watanabe, Mater. Sci. Eng. A 166, 11 (1993)

    Article  Google Scholar 

  24. A. Momeni, K. Dehghani, G. Ebrahimi, J. Alloys Compd. 509, 9387 (2011)

    Article  CAS  Google Scholar 

  25. O. Sivakesavam, Y. Prasad, Mater. Sci. Eng. A 362, 118 (2003)

    Article  Google Scholar 

  26. L. Guo, S. Yang, H. Yang, J. Zhang, Chin. J. Aeronaut. 28, 1774 (2015)

    Article  Google Scholar 

  27. I. Watanabe, J. Watkins, H. Nakajima, M. Atsuta, T. Okabe, J. Dent. Res. 76, 773 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Strategic Technology Development Program (10062304) funded by the Ministry of Trade, Industry and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mok-Soon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, B.J., Park, H.S. & Kim, MS. High Temperature Deformation Behavior of Al–Zn–Mg-Based New Alloy Using a Dynamic Material Model. Met. Mater. Int. 24, 1249–1255 (2018). https://doi.org/10.1007/s12540-018-0128-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0128-1

Keywords

Navigation