Skip to main content
Log in

Microstructure and hot deformation behavior of A356/Al2O3 composite fabricated by infiltration method

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The hot deformation behavior of an A356/Al2O3 composite fabricated by the infiltration method was characterized in the temperature range of 300-500 °C and strain rate range of 0.001-1/s using compressive tests. The composite consists of an Al-Si based matrix and nano-sized Al2O3 particulates. A constitutive model was established based on the hyperbolic sine Arrhenius type equation and its hot workability was evaluated by means of processing maps based on Dynamic Material Modeling. The activation energy for hot deformation was calculated to be 223 kJ/mol, which is higher than the activation energy for self-diffusion of pure aluminum (142 kJ/mol). The optimum processing condition for the hot working of the composite was found to exist at 500 °C with a strain rate of 1/s, where a dynamic recrystallized microstructure was observed and the maximum efficiency was exhibited in the processing map. Voids were frequently detected at 500 °C with lower strain rates, deteriorating the workability of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Horie, K. Nishizawa, T. Ogawa, S. Akazaki, and K. Miura, The Development of a High Fuel Economy and High Performance Four-Valve Lean Burn Engine (SAE 1992 Transactions), Society of Automotive Engineers, USA (1992).

    Google Scholar 

  2. K. Pramanik, Renew. Energ. 28, 239 (2003).

    Article  Google Scholar 

  3. H. Raheman and A. Phadatare, Biomass Bioenerg. 27, 393 (2004).

    Article  Google Scholar 

  4. P. Rohatgi, J. Kim, N. Gupta, S. Alaraj, and A. Daoud, Compos. Part A-Appl. S. 37, 430 (2006).

    Article  Google Scholar 

  5. S. Chou, J. Huang, D. Lii, and H. Lu, J. Alloy. Compd. 436, 124 (2007).

    Article  Google Scholar 

  6. Z. Luo, Y. Song, and S. Zhang, Scripta Mater. 45, 1183 (2001).

    Article  Google Scholar 

  7. C. Badini, P. Fino, M. Musso, and P. Dinardo, Mater. Chem. Phys. 64, 247 (2000).

    Article  Google Scholar 

  8. N. Movahedi, S. Mirbagheri, and S. Hoseini, Met. Mater. Int. 20, 757 (2014).

    Article  Google Scholar 

  9. S. Park, M. Kim, K. Kim, S. Shin, J. Lee, and K. Ryu, Korean J. Met. Mater. 49, 853 (2011).

    Google Scholar 

  10. Z. Asghar, G. Requena, and E. Boller, Acta Mater. 59, 6420 (2011).

    Article  Google Scholar 

  11. J. Kim, G.-S. Jang, M.-S. Kim, and J.-K. Lee, T. Nonferr. Metal. Soc., 24, 2346 (2014).

    Article  Google Scholar 

  12. A. Momeni and K. Dehghani, Mat. Sci. Eng. A 528, 1448 (2011).

    Article  Google Scholar 

  13. F. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, Scripta Mater. 57, 759 (2007).

    Article  Google Scholar 

  14. H. R. Ashtiani, M. Parsa, and H. Bisadi, Mat. Sci. Eng. A 545, 61 (2012).

    Article  Google Scholar 

  15. E. Cerri, E. Evangelista, A. Forcellese, and H. McQueen, Mat. Sci. Eng. A 197, 181 (1995).

    Article  Google Scholar 

  16. C. Sellars and W. McTegart, Acta Mater. 14, 1136 (1966).

    Article  Google Scholar 

  17. H. McQueen and N. Ryan, Mat. Sci. Eng. A 322, 43 (2002).

    Article  Google Scholar 

  18. S. Yu and M. Kim, Metals 6, 32 (2016).

    Article  Google Scholar 

  19. S. Lee and M. Kim, Met. Mater. Int. 22, 579 (2016).

    Article  Google Scholar 

  20. T. Lundy and J. Murdock, J. Appl. Phys. 33, 1671 (1962).

    Article  Google Scholar 

  21. J. Shao, B. Xiao, Q. Wang, Z. Ma, Y. Liu, and K. Yang, Mat. Sci. Eng. A 527, 7865 (2010).

    Article  Google Scholar 

  22. Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, K. A. Lark, et al. Metall. Trans. A 15, 1883 (1984).

    Article  Google Scholar 

  23. S. V. S. Narayana Murty and B. N. Rao, J. Mater. Sci. Lett. 17, 1203 (1998).

    Article  Google Scholar 

  24. Y. Prasad and T. Seshacharyulu, Mat. Sci. Eng. A 243, 82 (1998).

    Article  Google Scholar 

  25. P. Cavaliere, E. Cerri, and P. Leo, Compos. Sci. Technol. 64, 1287 (2004).

    Article  Google Scholar 

  26. G. Ganesan, K. Raghukandan, R. Karthikeyan, and B. Pai, Mat. Sci. Eng. A 369, 230 (2004).

    Article  Google Scholar 

  27. A. Whitehouse and T. Clyne, Composites 24, 256 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mok-Soon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, SB., Jeon, KS., Kim, MS. et al. Microstructure and hot deformation behavior of A356/Al2O3 composite fabricated by infiltration method. Met. Mater. Int. 23, 639–647 (2017). https://doi.org/10.1007/s12540-017-6676-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6676-y

Keywords

Navigation