Skip to main content
Log in

Titanium carbide nanoparticles reinforcing nickel matrix for improving nanohardness and fretting wear properties in wet conditions

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study Ni/nano-TiC functional composite coatings were produced by electro-codeposition of TiC nanoparticles (50 nm mean diameter) with nickel on 304L stainless steel support. Coatings were obtained from a Watts classical solution in which TiC nanoparticles were added. The surface morphology, chemical composition, structure, roughness and thickness, were evaluated in relation to the effect of TiC nanoparticles incorporation into Ni matrix. It was found that incorporation of TiC nanoparticles into the nickel matrix produces morphological changes in the deposit and increases the roughness. The fretting wear behavior in wet conditions of the obtained coatings was evaluated on a ball-on-plate configuration. To evaluate the wet fretting wear (tribocorrosion) behavior the open circuit potential was measured before, during and after the fretting tests at room temperature in the solution that simulates the primary water circuit of Pressurized Water Reactors. The results show that Ni/nano-TiC composite coatings exhibited a low friction coefficient, high nanohardness and fretting wear resistance in wet conditions compared with pure Ni coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Sekhar and T. P. Singh, J Mater. Res. Technol. 4, 197 (2015).

    Article  Google Scholar 

  2. X.-H. Qu, L. Zhang, M. Wu and S.-B. Ren, Prog. Nat. Sci. Mater. Int. 21, 189 (2011).

    Article  Google Scholar 

  3. A. S. Verma, S. Kant, N. M. Suri, and N. M. Yashpal, Mater. Today: Proc. 2, 2840 (2015).

    Article  Google Scholar 

  4. A. Liu, M. Guo, M. Zhao, and C. Wang, Surf. Coat. Tech. 201, 7978 (2007).

    Article  Google Scholar 

  5. O. Tazegul, V. Dylmishi, and H. Cimenoglu, Arch. Civ. Mech. Eng. 16, 344 (2016).

    Article  Google Scholar 

  6. J. Wang, L. Li, and W. Tao, Opt. Laser Technol. 82, 170 (2016).

    Article  Google Scholar 

  7. L. Benea, E. Danaila, and J.-P. Celis, Mat. Sci. Eng. A 610, 106 (2014).

    Article  Google Scholar 

  8. D. K. Singh and V. B. Singh, Mat. Sci. Eng. A 532, 493 (2012).

    Article  Google Scholar 

  9. H. Gül, F. Kiliç, S. Aslan, A. Alp, and H. Akbulut, Wear 267, 976 (2009).

    Article  Google Scholar 

  10. G. Parida, D. Chaira, M. Chopkar, and A. Basu, Surf. Coat. Tech. 205, 4871 (2011).

    Article  Google Scholar 

  11. L. Benea, F. Wenger, P. Ponthiaux, and J. P. Celis, Wear 266, 398 (2009).

    Article  Google Scholar 

  12. F. Bratu, L. Benea, and J.-P. Celis, Surf. Coat. Tech. 201, 6940 (2007).

    Article  Google Scholar 

  13. R. K. Saha and T. I. Khan, Surf. Coat. Tech. 205, 890 (2010).

    Article  Google Scholar 

  14. S. T. Aruna, M. Muniprakash, and V. K. William Grips, J. Appl. Electrochem. 43, 805 (2013).

    Article  Google Scholar 

  15. L. Benea, J. Appl. Electrochem. 39, 1671 (2009).

    Article  Google Scholar 

  16. M. Karbasi, N. Yazdian, and A. Vahidian, Surf. Coat. Tech. 207, 587 (2012).

    Article  Google Scholar 

  17. L. Benea, S.-B. Basa, E. Danaila, N. Caron, O. Raquet, P. Ponthiaux, and J.-P. Celis, Mater. Design 65, 550 (2015).

    Article  Google Scholar 

  18. S. Mohajeri, A. Dolati, and S. Rezagholibeiki, Mater. Chem. Phys. 129, 746 (2011).

    Article  Google Scholar 

  19. P. Gyftou, E. A. Pavlatou, and N. Spyrellis, Appl. Surf. Sci. 254, 5910 (2008).

    Article  Google Scholar 

  20. E. A. Pavlatou, M. Stroumbouli, P. Gyftou, and N. Spyrellis, J. Appl. Electrochem. 36, 385 (2006).

    Article  Google Scholar 

  21. D. K. Singh, M. K. Tripathi, and V. B. Singh, J. Electrochem. Soc. 159, 469 (2012).

    Article  Google Scholar 

  22. D. Thiemig and A. Bund, Surf. Coat. Tech. 202, 2976 (2008).

    Article  Google Scholar 

  23. J. A. Calderón, J. E. Henao, and M. A. Gómez, Electrochim. Acta 124, 190 (2014).

    Article  Google Scholar 

  24. M. R.Vaezi, S. K. Sadrnezhaad, and L. Nikzad, Colloid. Surface 315, 176 (2008).

    Article  Google Scholar 

  25. D. K. Singh, M. K. Tripathi, and V. B. Singh, Int. J. Mater. Sci. Appl. 2, 68 (2013).

    Google Scholar 

  26. P. Ponthiaux, F. Wenger, D. Drees, and J. P. Celis, Wear 256, 459 (2004).

    Article  Google Scholar 

  27. A. Berradja, F. Bratu, L. Benea, G. Willems, and J. P. Celis, Wear 261, 987 (2006).

    Article  Google Scholar 

  28. E. Mardare, L. Benea, and J.-P. Celis, Optoelectron Adv. Mater 6, 474 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Benea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dănăilă, E., Benea, L., Caron, N. et al. Titanium carbide nanoparticles reinforcing nickel matrix for improving nanohardness and fretting wear properties in wet conditions. Met. Mater. Int. 22, 924–934 (2016). https://doi.org/10.1007/s12540-016-6090-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-6090-x

Keywords

Navigation