Skip to main content
Log in

Electrodeposition and tribocorrosion behaviour of ZrO2–Ni composite coatings

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

With the objective of producing new functional surfaces with enhanced tribo-corrosion properties we have investigated the electrochemical codeposition of composites in which an electrodeposited metal (nickel) is the matrix and a transition metal oxide (ZrO2) is the dispersed phase. This paper describes the effect of ZrO2 dispersed particle codeposition on nickel electrocrystallisation steps as well as the tribocorrosion behaviour of the composite coatings obtained. This system was selected because nickel is an industrially important coating material on steel and other support materials. The cathodic polarization curves have been plotted both in the presence and absence of the insoluble dispersed phase. Electrochemical impedance spectroscopy was used to obtain additional information on the early steps of nickel and nickel matrix composite electrodeposition. Impedance data were acquired with a Solartron type electrochemical interface and frequency response analyzer. A schematic codeposition mechanism is proposed. The influence of zirconium oxide on the nickel electrodeposition steps is discussed. The tribocorrosion properties of ZrO2–Ni composite coatings (100 μm thickness) have been studied in 0.5 M K2SO4 solution on a pin on disc tribo-corrosimeter connected to an electrochemical cell. The normal force applied was 10 N at a rotation speed of 120 rpm. The counterbody (pin) was a corrundum cylinder (7 mm in diameter), mounted vertically on a rotating head, above the specimen. The lower spherical end (radius = 100 mm) of the pin was then applied against the composite surface (disc).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Guglielmi N (1972) J Electrochem Soc 119(8):1009

    Article  CAS  Google Scholar 

  2. Benea L, Bonora BL, Borello A, Martelli S, Wenger F, Ponthiaux P, Galland J (2001) J Electrochem Soc 148(7):C461

    Article  CAS  Google Scholar 

  3. Benea L, Bonora PL, Borello A, Martelli S (2002) Mater Corros 53:23

    Article  CAS  Google Scholar 

  4. Benea L, Bonora PL, Wenger F, Ponthiaux P, Galland J (2002) Processing and properties of electrodeposited composite coatings—results and perspectives, CD-ROM proceeding of 15th international corrosion congress—frontiers in corrosion science and technology Granada Spain, 22–27 September

  5. Benea L (1998) Composite electrodeposition—theory and practice. Ed Porto Franco, RO, 187 pp

  6. Watson SW (1993) J Electrochem Soc 140:2235

    Article  CAS  Google Scholar 

  7. Maurin G, Lavanant A (1995) J Appl Electrochem 25:1113

    Article  CAS  Google Scholar 

  8. Fransaer J, Celis JP, Roos JR (1992) J Electrochem Soc 139:413

    Article  CAS  Google Scholar 

  9. Fransaer J, Celis JP, Roos JR (1993) Metal Finish 91:97

    CAS  Google Scholar 

  10. Ciubotariu AC, Benea L, Lakatos-Varsanyi M, Dragan V (2008) Electrochim Acta 53:4557

    Article  CAS  Google Scholar 

  11. Garcia J, Conde A, Langelaan G, Fransaer J, Celis JP (2003) Corros Sci 45:1173

    Article  CAS  Google Scholar 

  12. Cattarin S, Musiani M (2007) Electrochim Acta 52:2796

    Article  CAS  Google Scholar 

  13. Hou KH, Ger MD, Wang LM, Ke ST (2007) Wear 253:994

    Article  Google Scholar 

  14. Zhou Y, Zhang H, Qian B (2007) Appl Surf Sci 253(20):8335

    Article  CAS  Google Scholar 

  15. Benea L, Bonora PL, Borello A, Martelli S (2001) Wear 249(10–11):995

    Article  CAS  Google Scholar 

  16. Bratu F, Benea L, Celis JP (2007) Surf Coat Technol 201(16–17):6940

    Article  CAS  Google Scholar 

  17. Erdey-Grúz T (1972) Kinetics of electrode processes. Ed Akadémiai Kiadó, Budapest, HU, p 350

  18. Radovici O (1986) Tratat de Chimie Fizică. Electrochimie Ed. Academy, Bucharest, RO

  19. Bockris JO’M (1967) Fundamental aspects of electrocrystallization. Plenum Press, NY

    Google Scholar 

  20. Epelboin I, Joussellin M, Wiart R (1981) J Electroanal Chem 119:61

    Article  CAS  Google Scholar 

  21. Chassaing E, Joussellin M, Wiart R (1983) J Electroanal Chem 157:75

    CAS  Google Scholar 

  22. Moti E, Shariat MH, Bahroloom ME (2008) J Appl Electrochem 38:605

    Article  CAS  Google Scholar 

  23. Garcia J, Drees D, Celis JP (2001) Wear 249:452

    Article  CAS  Google Scholar 

  24. Fontanesi C, Ciovanardi R, Cannio M (2008) J Appl Electrochem 38:425

    Article  CAS  Google Scholar 

  25. Oltra R (1991) In: Sagües AA, Meletis EI (eds) Wear-corrosion interactions in liquid media. Minerals Metals and Materials Society, Warrendale, p 3

  26. Benea L, Ponthiaux P, Wenger F, Galland J, Hertz D, Malo JY (2004) Wear 256(9–10):948

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank COST-D33—Chemistry-STSM and CNCSIS National Grant 1347 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Benea.

Additional information

Lidia Benea—ISE Active Member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benea, L. Electrodeposition and tribocorrosion behaviour of ZrO2–Ni composite coatings. J Appl Electrochem 39, 1671–1681 (2009). https://doi.org/10.1007/s10800-009-9859-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9859-5

Keywords

Navigation