Skip to main content
Log in

Role of W on the dislocation evolution in Ni-W alloy during tension followed by compression loading

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this paper, we report deformation behavior during tension followed by compression loading for Nickel and Nickel-Tungsten alloy (15 at% W) single crystals using molecular dynamics simulations to investigate the role of W on the dislocation evolution in Ni-W alloy. The stress-strain responses of single crystals under uniaxial tension followed by compression loading after different pre-strains (i.e. 0.10 and 0.20 true strains for pure Ni; 0.10 and 0.24 true strains for Ni-15 at% W alloy) are simulated at strain rate of 108 s−1 and at the temperature of 300 K. Dislocation mobility, dislocation-dislocation interaction and dislocation-twin interactions are thoroughly investigated to evaluate their influence on deformation behaviour during reverse loading. Slip dominated deformation mechanism prevails during forward loading but both twin and slip are found to be operative during reverse loading for Ni single crystal. It is observed that the dominant deformation mechanism is twin for both forward and reverse loading in case of Ni-15 at% W alloy single crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Younes and E. Gileadi, Electrochem. Solid St. 3, 543 (2000).

    Article  Google Scholar 

  2. O. Younes, L. Zhu, Y. Rosenberg, Y. Shacham-Diamand, and E. Gileadi, Langmuir 17, 8270 (2001).

    Article  Google Scholar 

  3. L. Zhu, O. Younes, N. Ashkenasy, Y. Shacham-Diamandand, and E. Gileadi, Appl. Surf. Sci. 200, 1 (2002).

    Article  Google Scholar 

  4. O. Younes-Metzler, L. Zhu, and E. Gileadi, Electrochim. Acta 48, 2551 (2003).

    Article  Google Scholar 

  5. S. Yao, S. Zhao, H. Guo, and M. Kowaka, Corrosion 52, 183 (1996).

    Article  Google Scholar 

  6. P. Schloßmacher and T. Yamasaki, Microchim. Acta 132, 309 (2000).

    Article  Google Scholar 

  7. N. Sulitanu, J. Magn. Magn. Mater. 231, 85 (2001).

    Article  Google Scholar 

  8. N. D. Sulitanu, Mater. Sci. Eng. B-Adv. 95, 230 (2002).

    Article  Google Scholar 

  9. P. Lammel, L. D. Rafailovic, M. Kolb, K. Pohl, A. H. Whitehead, G. Grundmeierand, and B. Gollas, Surf. Coat. Tech. 206, 2545 (2012).

    Article  Google Scholar 

  10. P. Indyka, E. Beltowska-Lehman, L. Tarkowski, A. Bigosand, E. García-Lecina, J. Alloy. Compd. 590, 75 (2014).

    Article  Google Scholar 

  11. T. Yamasaki, P. Schloßmacher, K. Ehrlichand, and Y. Ogino, Nanostruct. Mater. 10, 375 (1998).

    Article  Google Scholar 

  12. Z. Zhongand and S. J. Clouser, Surf. Coat. Tech. 240, 380 (2014).

    Article  Google Scholar 

  13. N. Atanassov, K. Gencheva, and M. Bratoeva, Plat. Surf. Finish. 84, 67 (1997).

    Google Scholar 

  14. O. Younes and E. Gileadi, J. Electrochem. Soc. 149, C100 (2002).

    Article  Google Scholar 

  15. Z. Zhong and S. J. Clouser, Surf. Coat. Tech. 240, 380 (2014).

    Article  Google Scholar 

  16. C. A. Schuh, T. G. Nieh, and H. Iwasaki, Acta Mater. 51, 431 (2003).

    Article  Google Scholar 

  17. Y. Lu, C. Peng, Y. Ganesan, J. Y. Huangand, and J. Lou, Nanotechnology 22, 355702 (2011).

    Article  Google Scholar 

  18. C. H. Lin, H. Ni, X. Wang, M. Chang, Y. J. Chao, J. R. Deka, and X. Li, Small 6, 927 (2010).

    Article  Google Scholar 

  19. J. Y. Huang, H. Zheng, S. X. Mao, Q. Liand, and G. T. Wang, Nano lett. 11, 1618 (2011).

    Article  Google Scholar 

  20. M. T. McDowell, A. M. Leachand, and K. Gall, Model. Simul. Mater. Sc. 16, 045003 (2008).

    Article  Google Scholar 

  21. R. Komanduri, N. Chandrasekaran, and L. M. Raff, Int. J. Mech. Sci. 43, 2237 (2001).

    Article  Google Scholar 

  22. P. Wang, W. Chou, A. Nie, Y. Huang, H. Yaoand, and H. Wang, J. Appl. Phys. 110, 093521 (2011).

    Article  Google Scholar 

  23. S. J. A. Koh and H. P. Lee, Nanotechnology 17, 3451 (2006).

    Article  Google Scholar 

  24. N. Yedla, M. Srinivas, S. Ghosh, and B. Majumdar, Intermetallics 18, 2419 (2010).

    Article  Google Scholar 

  25. W. D. Wang, C. L. Yi, and K. Q. Fan, T. Nonferr. Metal. Soc. 23, 3353 (2013).

    Article  Google Scholar 

  26. C. S. Tiwary, S. Chakraborty, D. R. Mahapatra, and K. Chattopadhyay, J. Appl. Phys. 115, 2035021 (2014).

    Article  Google Scholar 

  27. M. Jo, Y. M. Koo, and S. K. Kwon, Met. Mater. Int. 21, 227 (2015).

    Article  Google Scholar 

  28. Y. Zhang and H. Huang, Nanoscale Res. Lett. 4, 34 (2009).

    Article  Google Scholar 

  29. J. Han, M. Park, A. Lee, D. Sohn, J. Park, and S. Im, Met. Mater. Int. 20, 899 (2014).

    Article  Google Scholar 

  30. X. L. Ma and W. Yang, Nanotechnology 14, 1208 (2003).

    Article  Google Scholar 

  31. N. Y. Park, P. R. Cha, Y. C. Kim, H. K. Seok, S. H. Han, S. C. Lee, S. Cho, and H. Jung, Met. Mater. Int. 15, 447 (2009).

    Article  Google Scholar 

  32. S. Pal, D. Z. Kamal, N. Yedla, and K. Dutta, J. Comput. Theor. Nanos. 12, 2264 (2015).

    Article  Google Scholar 

  33. N. Yedla, M. Meraj, P. Gupta, V. Sarat, A. J. Kabi, and S. Pal, Metall. Res. Technol. 112, 505 (2015).

    Article  Google Scholar 

  34. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  35. A. Stukowski, Model. Simul. Mater. Sc. 18, 015012 (2010).

    Article  Google Scholar 

  36. A. Stukowski, Model. Simul. Mater. Sc. 20, 045021 (2012).

    Article  Google Scholar 

  37. X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, Phys. Rev. B 69, 1441131 (2004).

    Google Scholar 

  38. L. J. Meng, X. Y. Peng, K. W. Zhang, C. Tang, and J. X. Zhong, J. Appl. Phys. 111, 0243031 (2012).

    Google Scholar 

  39. H. Choi, E. K. Lee, and Y. C. Chung, Curr. Appl. Phys. 11, S400 (2011).

    Article  Google Scholar 

  40. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B 58, 11085 (1998).

    Article  Google Scholar 

  41. R. Komanduri, N. Chandrasekaran, and L. M. Raff, Int. J. Mech. Sci. 43, 2237 (2001).

    Article  Google Scholar 

  42. Z. X. Wu, Y. W. Zhang, M. H. Jhon, J. R. Greer, and D. J. Srolovitz, Acta Mater. 61, 1831 (2013).

    Article  Google Scholar 

  43. R. L. Penn and J. F. Banfield, Science 281, 969 (1998).

    Article  Google Scholar 

  44. J. Godet, S. Brochard, L. Pizzagalli, P. Beauchamp, and J. M. Soler, Phys. Rev. B 73, 0921051 (2006).

    Article  Google Scholar 

  45. J. C. Williams, A. W. Thompson, and R. G. Baggerly, Scripta Metall. Mater 8, 625 (1974).

    Article  Google Scholar 

  46. R. E. Stoltz and A. G. Pineau, Mater. Sci. Eng. 34, 275 (1978).

    Article  Google Scholar 

  47. M. Sundararaman, W. Chen, R. P. Wahi, A. Wiedenmann, W. Wagner, and W. Petry, Acta. Metall. Mater. 40, 1023 (1992).

    Article  Google Scholar 

  48. M. Arzaghi, B. Beausir, and L. S. Tóth, Acta Mater. 57, 2440 (2009).

    Article  Google Scholar 

  49. Y. T. Zhu, X. Z. Liao, and X. L. Wu, Prog. Mater. Sci. 57, 1 (2012).

    Article  Google Scholar 

  50. G. I. Taylor, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, pp.362–387, Royal Society, London (1934).

    Google Scholar 

  51. V. V. Bulatov, L. L. Hsiung, M. Tang, A. Arsenlis, M. C. Bartelt, W. Cai, J. N. Florando, M. Hiratani, M. Rhee, G. Hommes, T. G. Pierce1, and T. D. de La Rubia, Nature 440, 1174 (2006).

    Article  Google Scholar 

  52. T. Yamasaki, P. Schloßmacher, K. Ehrlich, and Y. Ogino, Nanostruct. Mater. 10, 375 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meraj, M., Yedla, N. & Pal, S. Role of W on the dislocation evolution in Ni-W alloy during tension followed by compression loading. Met. Mater. Int. 22, 373–382 (2016). https://doi.org/10.1007/s12540-016-5551-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-5551-6

Keywords

Navigation