Skip to main content
Log in

Temperature dependence of screw dislocation mobility on shuffle-set of silicon

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Large-scale atomistic simulations are performed in order to observe local behaviors of screw dislocations located on the shuffle set of (111) in single crystal silicon, focusing on the propagation process of the screw dislocations. A quadrupolar arrangement of screw dislocations is utilized to impose the periodic boundary conditions along each of the three spatial directions. With the aid of molecular dynamics simulations, the dislocation mobility is investigated in terms of the critical resolved shear stress. Based on the results from the simulations, we discuss effects of the model size and temperature on the critical resolved shear stress. After choosing the proper model size to reduce undesirable interference between the dislocations, we further estimate the Peierls stress by fitting from a set of the critical resolved shear stresses at various temperatures. Meanwhile, we observe a double kink mechanism in the dislocation propagation which is the most energetically favorable dislocation movement in silicon. We investigate the formation and migration of kink pairs on an undissociated screw dislocation in silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Hirth, Citation Classic — Theory of Dislocations, p.18, Current Contents/Physical Chemical & Earth Sciences (1981).

    Google Scholar 

  2. M. S. Duesbery and B. Joos, Phil. Mag. Lett. 74, 253 (1996).

    Article  Google Scholar 

  3. E. Kaxiras and M. S. Duesbery, Phys. Rev. Lett. 70, 3752 (1993).

    Article  Google Scholar 

  4. B. Joos, Q. Ren, and M. S. Duesbery, Phys. Rev. B 53, 11882 (1996).

    Article  Google Scholar 

  5. Q. Ren, B. Joos, and M. S. Duesbery, Phys. Rev. B 52, 13223 (1995).

    Article  Google Scholar 

  6. H. Koizumi, Y. Kamimura, and T. Suzuki, Philos. Mag. A 80, 609 (2000).

    Article  Google Scholar 

  7. L. Pizzagalli, P. Beauchamp, and J. Rabier, Philos. Mag. 83, 1191 (2003).

    Article  Google Scholar 

  8. L. Pizzagalli, and P. Beauchamp, Phil. Mag. Lett. 84, 729 (2004).

    Article  Google Scholar 

  9. J. Rabier, P. Cordier, J. L. Demenet, and H. Garem, Mat. Sci. Eng. A-Struct. 309, 74 (2001).

    Article  Google Scholar 

  10. N. Lehto and S. Oberg, Phys. Rev. Lett. 80, 5568 (1998).

    Article  Google Scholar 

  11. R. H. Byrd, P. H. Lu, J. Nocedal, and C. Y. Zhu, Siam. J. Sci. Comput. 16, 1190 (1995).

    Article  Google Scholar 

  12. L. Pizzagalli, A. Pedersen, A. Arnaldsson, H. Jonsson, and P. Beauchamp, Phys. Rev. B 77, 064106 (2008).

    Article  Google Scholar 

  13. G. Lucas, M. Bertolus, and L. Pizzagalli, J. Phys.-Condens. Mat. 22, 035802 (2010).

    Article  Google Scholar 

  14. S. Nose, J. Chem. Phys. 81, 511 (1984).

    Article  Google Scholar 

  15. C. X. Li, Q. Y. Meng, G. Li, and L. J. Yang, Superlattice. Microst. 40, 113 (2006).

    Article  Google Scholar 

  16. J. H. Shim, D. I. Kim, W. S. Jung, Y. W. Cho, K. T. Hong, and B. D. Wirth, J. Appl. Phys. 104, 083523 (2008).

    Article  Google Scholar 

  17. Y. Fan, Y. N. Osetsky, S. Yip, and B. Yildiz, Phys. Rev. Lett. 109, 135503 (2012).

    Article  Google Scholar 

  18. K. Kang, V. V. Bulatov, and W. Cai, P. Natl. Acad. Sci. USA, 109, 15174 (2012).

    Article  Google Scholar 

  19. K. Hajizadeh and B. Eghbali, Met. Mater. Int. 20, 343 (2014).

    Article  Google Scholar 

  20. J. E. Jung, J. Park, J.-S. Kim, J. B. Jeon, S. K. Kim, and Y. W. Chang, Met. Mater. Int. 20, 27 (2014).

    Article  Google Scholar 

  21. G. Chen, G. Fu, H. Chen, C. Cheng, W. Yan, and S. Lin, Met. Mater. Int. 18, 813 (2012).

    Article  Google Scholar 

  22. T. E. Kim, S. W. Sohn, J. M. Park, C. W. Bang, W. T. Kim, and D. H. Kim, Met. Mater. Int. 19, 667 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyoung Im.

Additional information

Jihoon Han, Mingyu Park contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Park, M., Lee, A. et al. Temperature dependence of screw dislocation mobility on shuffle-set of silicon. Met. Mater. Int. 20, 899–907 (2014). https://doi.org/10.1007/s12540-014-5015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-5015-9

Keywords

Navigation