Skip to main content
Log in

Effect of void defect on c-axis deformation of single-crystal Ti under uniaxial stress conditions: Evolution of tension twinning and dislocations

  • Novel Synthesis and Processing of Metals
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Deformation twins have a major role in the microstructure evolution of hexagonal close packed (HCP) metals. Voids are common defects in metals and have a significant impact on their properties. In this work, using molecular dynamics, a tension simulation of single-crystal titanium (Ti) with different void sizes under uniaxial stress conditions was performed. The results showed that the evolution and dominance of the \(\left\{ {10\bar 12} \right\}\) twin system using the Henning potential was not consistent with the Schmid criterion when the single-crystal Ti contained void defects. From a microscopic perspective, the authors analyzed the relationship between the nucleation and growth of twins and the emission of dislocation loops. The authors found that the existence of voids not only contributes to the emission of dislocation loops but also hinders the movement of these loops. With the increase in void size, the peak dislocation density of \({{\bf{V}}_{\bf{2}}}:\left\{ {10\bar 12} \right\}\left\langle {\bar 1101} \right\rangle\) partial dislocation loops decreased. This work is helpful to further investigate the nucleation and evolution of tension twins and to form an effective growth criterion for twins to study the twinning process of HCP metals during plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. M.J. Donachie: Titanium: A Technical Guide, 2nd ed. (ASM International, Materials Park, Ohio, 2000).

    Book  Google Scholar 

  2. C. Leyens and M. Peters: Titanium and Titanium Alloys: Fundamentals and Applications (Wiley-VCH Verlag GmbH & Co., 2003). IBSN: 3-527-30534-3.

  3. M. Niinomi: Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A 243, 231 (1998).

    Article  Google Scholar 

  4. H. Conrad: Effect of interstitial solutes on the strength and ductility of titanium. Prog. Mater. Sci. 26, 123 (1981).

    Article  CAS  Google Scholar 

  5. P.G. Partridge: The crystallography and deformation modes of hexagonal close-packed metals. Metall. Rev. 12, 169 (1967).

    Article  CAS  Google Scholar 

  6. I. Kim, J. Kim, D. Shin, X. Liao, and Y. Zhu: Deformation twins in pure titanium processed by equal channel angular pressing. Scr. Mater. 48, 813 (2003).

    Article  CAS  Google Scholar 

  7. L. Xiao: Twinning behavior in the Ti–5 at.% Al single crystals during cyclic loading along [0001]. Mater. Sci. Eng. A 394, 168 (2005).

    Article  Google Scholar 

  8. M. Yoo: Twinning and mechanical behavior of titanium aluminides and other intermetallics. Intermetallics 6, 597 (1998).

    Article  CAS  Google Scholar 

  9. J.W. Christian and S. Mahajan: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).

    Article  Google Scholar 

  10. S. Rawat and N. Mitra: Molecular dynamics investigation of c-axis deformation of single crystal Ti under uniaxial stress conditions: Evolution of compression twinning and dislocations. Comput. Mater. Sci. 141, 19 (2018).

    Article  CAS  Google Scholar 

  11. C. Barrett, M. Tschopp, and H. El Kadiri: Automated analysis of twins in hexagonal close-packed metals using molecular dynamics. Scr. Mater. 66, 666 (2012).

    Article  CAS  Google Scholar 

  12. S.J. Lainé and K.M. Knowles: \(\left\{ {11\bar 24} \right\}\) deformation twinning in commercial purity titanium at room temperature. Philos. Mag. 95, 2153 (2015).

    Article  Google Scholar 

  13. J. Zhang and S.P. Joshi: Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. J. Mech. Phys. Solids 60, 945 (2012).

    Article  CAS  Google Scholar 

  14. D.R. Askeland and P.P. Phule: The Science and Engineering of Materials (Springer, 2003). IBSN: 978-94-009-1842-9.

  15. A. Needleman: Void growth in an elastic-plastic medium. J. Appl. Mech. 39, 964 (1972).

    Article  Google Scholar 

  16. J. Koplik and A. Needleman: Void growth and coalescence in porous plastic solids. Int. J. Solids Struct. 24, 835 (1988).

    Article  Google Scholar 

  17. P-H. Sung and T-C. Chen: Studies of crack growth and propagation of single-crystal nickel by molecular dynamics. Comput. Mater. Sci. 102, 151 (2015).

    Article  CAS  Google Scholar 

  18. K. Zhao, C. Chen, Y. Shen, and T. Lu: Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper. Comput. Mater. Sci. 46, 749 (2009).

    Article  CAS  Google Scholar 

  19. T. Tang, S. Kim, and M. Horstemeyer: Molecular dynamics simulations of void growth and coalescence in single crystal magnesium. Acta Mater. 58, 4742 (2010).

    Article  CAS  Google Scholar 

  20. R. Aghababaei and S.P. Joshi: Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations. Acta Mater. 69, 326 (2014).

    Article  CAS  Google Scholar 

  21. S. Rawat and S.P. Joshi: Effect of multiaxial loading on evolution of \(\left\{ {101\bar 2} \right\}\) twinning in magnesium single crystals. Mater. Sci. Eng., A 659, 256 (2016).

    Article  CAS  Google Scholar 

  22. Y. Liu, N. Li, S. Shao, M. Gong, J. Wang, R. McCabe, Y. Jiang, and C. Tomé: Characterizing the boundary lateral to the shear direction of deformation twins in magnesium. Nat. Commun. 7, 11577 (2016).

    Article  CAS  Google Scholar 

  23. Z. Yang, G. Zhang, and J. Zhao: Molecular dynamics simulations of void effect of the copper nanocubes under triaxial tensions. Phys. Lett. A 380, 917 (2016).

    Article  CAS  Google Scholar 

  24. S. Rawat and N. Mitra: Evolution of tension twinning in single crystal Ti under compressive uniaxial strain conditions. Comput. Mater. Sci. 141, 302 (2018).

    Article  CAS  Google Scholar 

  25. L. Bao, C. Schuman, J.S. Lecomte, M.J. Philippe, X. Zhao, and C. Esling: A study of twin variant selection and twin growth in titanium. Adv. Eng. Mater. 13, 928 (2011).

    Article  CAS  Google Scholar 

  26. S. Godet, L. Jiang, A. Luo, and J. Jonas: Use of Schmid factors to select extension twin variants in extruded magnesium alloy tubes. Scr. Mater. 55, 1055 (2006).

    Article  CAS  Google Scholar 

  27. J.D. Honeycutt and H.C. Andersen: Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950 (1987).

    Article  CAS  Google Scholar 

  28. V. Lubarda, M. Schneider, D. Kalantar, B. Remington, and M. Meyers: Void growth by dislocation emission. Acta Mater. 52, 1397 (2004).

    Article  CAS  Google Scholar 

  29. T. Ohashi: Crystal plasticity analysis of dislocation emission from micro voids. Int. J. Plast. 21, 2071 (2005).

    Article  CAS  Google Scholar 

  30. S. Traiviratana, E.M. Bringa, D.J. Benson, and M.A. Meyers: Void growth in metals: Atomistic calculations. Acta Mater. 56, 3874 (2008).

    Article  CAS  Google Scholar 

  31. A.H. Cottrell and B. Bilby: Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. Sect. A 62, 49 (1949).

    Article  Google Scholar 

  32. A. Cottrell and B. Bilby: L.X. A mechanism for the growth of deformation twins in crystals. London, Edinburgh Dublin Philos. Mag. J. Sci. 42, 573 (1951).

    Article  CAS  Google Scholar 

  33. R. Hennig, T. Lenosky, D. Trinkle, S. Rudin, and J. Wilkins: Classical potential describes martensitic phase transformations between the α, β, and ω titanium phases. Phys. Rev. B 78, 054121 (2008).

    Article  Google Scholar 

  34. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  35. N.S. Martys and R.D. Mountain: Velocity Verlet algorithm for dissipative-particle-dynamics-based models of suspensions. Phys. Rev. E 59, 3733 (1999).

    Article  CAS  Google Scholar 

  36. D.J. Evans and B.L. Holian: The Nose–Hoover thermostat. J. Chem. Phys. 83, 4069 (1985).

    Article  CAS  Google Scholar 

  37. A. Stukowski, V.V. Bulatov, and A. Arsenlis: Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012).

    Article  Google Scholar 

  38. A. Stukowski: Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to deeply appreciate the support from the National Natural Sciences Foundation of China (11572191, 51701117, and 51779139) and the Shanghai Science and Technology Committee Foundation (17411962200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaolin Feng.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Chen, X. & Feng, M. Effect of void defect on c-axis deformation of single-crystal Ti under uniaxial stress conditions: Evolution of tension twinning and dislocations. Journal of Materials Research 34, 3699–3706 (2019). https://doi.org/10.1557/jmr.2019.279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.279

Navigation