Skip to main content
Log in

High temperature oxidation behaviour of ferritic stainless steel SUS 430 in humid air

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The high temperature oxidation behaviour of ferritic stainless steel SUS 430 was investigated over the temperature range from 1000 to 1150 °C in humid air containing 18% water vapour. Isothermal thermogravimetric analyses were performed to study the oxidation kinetics. The microstructure, composition and thickness of the oxide scale formed were investigated via optical microscopy (OM), X-ray diffraction and a scanning electron microscope equipped with an energy dispersive spectrometer. The results indicate that breakaway oxidation occurs at all temperatures and that its onset is accelerated by increasing temperature. The growth rate of the multilayer oxide scale follows a parabolic law with apparent activation energy of 240.69 kJ/mol, and the formation of FeO is decreased when the temperature is higher than 1120°C. The inner oxide scale, Fe-Cr spinel, grows mainly inward and internal oxidation is observed even in a short oxidation test at 1150°C for 105 s. The mechanism of high temperature oxidation of SUS 430 in humid air containing 18% water vapour is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Jin, J. Y. Choi, and Y. Y. Lee, ISIJ Int. 38, 739 (1998).

    Article  Google Scholar 

  2. D. J. Ha, H. K. Sung, S. Lee, J. S. Lee, and Y. D. Lee, Mater. Sci. Eng. A 507, 66 (2009).

    Article  Google Scholar 

  3. D. J. Ha, H. K. Sung, S. Lee, J. S. Lee, and Y. D. Lee, J. Korean Inst. Met. Mater. 46, 707 (2008).

    Google Scholar 

  4. W. Jin, J. Y. Choi, and Y. Y. Lee, ISIJ Int. 40, 789 (2000).

    Article  Google Scholar 

  5. Y. Hidaka and S. Lida, Tetsu To Hagane 96, 156 (2010).

    Article  Google Scholar 

  6. W. Sun, A. K. Tieu, Z. Jiang, and C. Lu, J. Mater. Process Tech. 155–156, 1307 (2004).

    Article  Google Scholar 

  7. J. Shen, L. Zhou, and T. Li, Oxid. Met. 48, 347 (1997).

    Article  Google Scholar 

  8. A. M. Huntz, A. Reckmann, C. Haut, C. Severac, M. Herbst, F. C. T. Resende, and A. C. S. Sabioni, Mater. Sci. Eng. A 447, 266 (2007).

    Article  Google Scholar 

  9. Z. Yang, G. Xia, P. Singh, and J. W. Stevenson, Solid State Ionics 176, 1495 (2005).

    Article  Google Scholar 

  10. A. N. Hansson, M. Montgomery, and m. A. J. Somers, Oxid Met 71, 201 (2009).

    Article  Google Scholar 

  11. J. E. Hammer, S. J. Laney, R. W. Jackson, K. Coyne, F. S. Pettit, and G. H. Meier, Oxid. Met. 67, 1 (2007).

    Article  Google Scholar 

  12. M. Palcut, L. Mikkelsen, K. Neufeld, M. Chen, R. Knibbe, and P. V. Hendriksen, Corros. Sci. 52, 3309 (2010).

    Article  Google Scholar 

  13. Z. Y. Chen, L. J. Wang, F. S. Li, and K. C. Chou, J. Alloys Comp. 574, 437 (2013).

    Article  Google Scholar 

  14. V. S. Dheeradhada, H. Cao, and M. J. Alinger, J. Power Sources 196, 1975 (2011).

    Article  Google Scholar 

  15. P. Promdirek, G. Lothongkum, S. Chandra-Ambhorn, Y. Wouters, and A. Galerie, Oxid. Met. 81, 315 (2014).

    Article  Google Scholar 

  16. J. Rufner, P. Gannon, P. White, M. Deibert, S. Teintze, R. Smith, and H. Chen, Int. J. Hydrogen Energy 33, 1392 (2008).

    Article  Google Scholar 

  17. J. W. Kim, J. W. Choi, and D. B. Lee, Met. Mater. Int. 11, 131 (2005).

    Article  Google Scholar 

  18. R. Y. Chen and W. Y. D. Yuen, Oxid. Met. 59, 433 (2002).

    Article  Google Scholar 

  19. Q. Jin, J. Li, Y. Xu, X. Xiao, W. Zhang, and L. Jiang, Corros. Sci. 52, 2846 (2010).

    Article  Google Scholar 

  20. H. E. Evans, Int. Mater. Rev. 40, 1 (1995).

    Article  Google Scholar 

  21. H. E. Evans, Mater. Sci. Eng., A A120, 139 (1989).

    Article  Google Scholar 

  22. H. E. Evans, Oxid. Met. 52, 379 (1999).

    Article  Google Scholar 

  23. H. C. Graham and H. H. Davis, J. Am. Ceram. Soc. 54, 89 (1971).

    Article  Google Scholar 

  24. D. L. Douglass, P. Kofstad, P. Rahmel, and G. C. Wood, Oxid. Met. 45, 529 (1996).

    Article  Google Scholar 

  25. H. Asteman, J. E. Svensson, and L. G. Johansson, Oxid. Met. 57, 193 (2002).

    Article  Google Scholar 

  26. S. Henry, A. Galerie, and L. Antoni, Mater. Sci. Forum 369- 372, 353 (2001).

    Article  Google Scholar 

  27. R. Y. Chen and W. Y. D. Yuen, Oxid. Met. 53, 539 (2000).

    Article  Google Scholar 

  28. R. Y. Chen, ISIJ Int. 45, 52 (2005).

    Article  Google Scholar 

  29. D. J. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier, Oxford (2008).

    Google Scholar 

  30. A. M. Huntz, J. Mater. Sci. Lett. 18, 1981 (1999).

    Article  Google Scholar 

  31. V. Badin, E. Diamanti, P. Forêt, and E. Darque-Ceretti, Oxid. Met. 82, 347 (2014).

    Article  Google Scholar 

  32. T. Nguyen, J. Zhang, and D. Young, Oxid. Met. 81, 549 (2014).

    Article  Google Scholar 

  33. M. Reichardt, Wire Ind. 68, 503, 505 (2001).

    Google Scholar 

  34. A. L. Marasco and D. J. Young, Oxid. Met. 36, 157 (1991).

    Article  Google Scholar 

  35. S. Rao, Oxid. Met. 77, 9 (2011).

    Google Scholar 

  36. A. C. S. Sabioni, A. M. Huntz, L. C. Borges, and F. Jomard, Philos. Mag. 87, 1921 (2007).

    Article  Google Scholar 

  37. R. Pettersson, L. Liu, and J. Sund, Corros. Eng. Sci. Techn. 40, 211 (2005).

    Article  Google Scholar 

  38. R. N. Durham, B. Gleeson, and D. J. Young, Oxid. Met. 50, 139 (1998).

    Article  Google Scholar 

  39. N. Birks, G. H. Meier, and F. S. Pettit, High-Temperature Oxidation of Metals, 2nd ed., pp.133–134, Cambridge University Press, Cambridge (2005).

    Google Scholar 

  40. A. Yamauchi, K. Kurokawa, and H. Takahashi, Oxid. Met. 59, 517 (2003).

    Article  Google Scholar 

  41. N. K. Othman, J. Zhang, and D. J. Young, Oxid Met 73, 337 (2010).

    Article  Google Scholar 

  42. A. Fry, S. Osgerby, and M. Wright, Oxidation of Alloys in Steam Environments-A Review, http://publications.npl.co.uk/npl_web/pdf/matc90.pdf (2002).

    Google Scholar 

  43. A. U. Seybolt, J. Electrochem. Soc., 147 (1960).

  44. K. Honda, T. Maruyama, T. Atake, and Y. Saito, Oxid. Met. 38, 347 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyi Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Jiang, Z., Wei, D. et al. High temperature oxidation behaviour of ferritic stainless steel SUS 430 in humid air. Met. Mater. Int. 21, 251–259 (2015). https://doi.org/10.1007/s12540-015-4168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4168-5

Keywords

Navigation