Skip to main content
Log in

One-step preparation of reduced graphene oxide/carbon nanotube hybrid thin film by electrostatic spray deposition for supercapacitor applications

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this paper, we describe a binder-free reduced graphene oxide/carbon nanotube hybrid thin film electrode prepared using a one-step electrostatic spray deposition method. Though we introduce a novel method, we suspect that the greater potential impact is more related to the fact that this technique is able to accomplish producing an electrode with a single process and allows a degree of control over the film properties not yet found in other fabrication methods that require multiple steps (that include post processing). In order to investigate the effect of carbon nanotube as a nano-spacer on the electrochemical properties of the reduced graphene oxide/carbon nanotube hybrid thin film electrodes, the various content of carbon nanotube was incorporated between the 2 dimensional layered reduced graphene oxide sheets to prevent restacking among reduced graphene oxide sheets and their electrochemical properties were systemically investigated using cyclic voltammetry, galvanostatic charge/discharge test and electrochemical impedance spectroscopy. The hybrid thin film electrode delivered a higher reversible specific capacitance of 187 F·g−1 at 0.5 A·g−1 and showed a better rate capability by maintaining 73% of the specific capacitance at 16 A·g−1 (vs. 0.5 A·g−1), which exhibit remarkable electrochemical performances than a RGO thin film electrodes for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  2. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett. 8, 3498 (2008).

    Article  Google Scholar 

  3. L. Rodriguez-Perez, M. A. A. Herranz, and N. Martin, Chem. Comm. 49, 3721 (2013).

    Article  Google Scholar 

  4. J. H. Lee, D. H. Cho, S. C. Kim, S. G. Baek, J. G. Lee, J. M. Kang, J.-B. Choi, C. S. Seok, M. K. Kim, J. C. Koo, and B. S. Lim, Korean J. Met. Mater. 50, 206 (2012).

    Article  Google Scholar 

  5. M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme, and I. A. Aksay, Chem. Mater. 19, 4396 (2007).

    Article  Google Scholar 

  6. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45, 1558 (2007).

    Article  Google Scholar 

  7. Y. Si and E. T. Samulski, Nano Lett. 8, 1679 (2008).

    Article  Google Scholar 

  8. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nat. Nanotech. 3, 101 (2008).

    Article  Google Scholar 

  9. J. Yan, T. Wei, B. Shao, F. Ma, Z. Fan, M. Zhang, C. Zheng, Y. Shang, W. Qian, and F. Wei, Carbon 48, 1731 (2010).

    Article  Google Scholar 

  10. Z. Lei, N. Christov, and X. S. Zhao, Energy Environ. Sci. 4, 1866 (2011).

    Article  Google Scholar 

  11. Y. Xu, H. Bai, G. Lu, C. Li, and G. Shi, J. Am. Chem. Soc. 130, 5856 (2008).

    Article  Google Scholar 

  12. D. Cai, M. Song, and C. Xu, Adv. Mater. 20, 1706 (2008).

    Article  Google Scholar 

  13. Z.-S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, and H.-M. Cheng, Adv. Mater. 21, 1756 (2009).

    Article  Google Scholar 

  14. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Nat. Nanotech. 3, 538 (2008).

    Article  Google Scholar 

  15. J. Liu, J. Tang, and J. J. Gooding, J. Mater. Chem. 22, 12435 (2012).

    Article  Google Scholar 

  16. J. H. Kang, J. M. Choi, J.Y. Hyeon, and J. H. Sok, Korean J. Met. Mater. 52, 55 (2014).

    Article  Google Scholar 

  17. J. H. Kim, K.W. Nam, S. B. Ma, and K.-B. Kim, Carbon 44, 1963 (2006).

    Article  Google Scholar 

  18. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature 458, 872 (2009).

    Article  Google Scholar 

  19. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).

    Article  Google Scholar 

  20. Z. Lin, Y. Liu, Y. Yao, O. J. Hildreth, Z. Li, K. Moon, and C.-P. Wong, J/ Phys. Chem. C 115, 7120 (2011).

    Article  Google Scholar 

  21. X. Du, P. Guo, H. Song, and X. Chen, Electrochim. Acta 55, 4812 (2010).

    Article  Google Scholar 

  22. J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque, and M. Chesneau, J Power Sources 101, 109 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwang Chul Roh or Kwang-Bum Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youn, HC., Bak, SM., Park, SH. et al. One-step preparation of reduced graphene oxide/carbon nanotube hybrid thin film by electrostatic spray deposition for supercapacitor applications. Met. Mater. Int. 20, 975–981 (2014). https://doi.org/10.1007/s12540-014-5024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-5024-8

Keywords

Navigation