Skip to main content
Log in

ZnFe2O4 Nanoparticles Supported on Graphene Nanosheets for High-Performance Supercapacitor

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present work includes the synthesis and characterization of zinc ferrite (ZnFe2O4)/graphene nanosheets composite as electrodes for supercapacitor application. The structural properties were studied using x-ray diffraction and Raman spectroscopy. The synthesized electrode was further analyzed with scanning electron microscopy (SEM) and transmission electron microscopy for surface morphology, which confirm the particle adherences between ZnFe2O4 nanoparticles and graphene nano-sheets. The SEM images also confirmed a highly porous structure leading to excellent ion transportability, and a larger surface area for high amounts of charge storage. The device performance of the ZnFe2O4/graphene nanosheets as electrodes was tested via electrochemical analysis, cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The device exhibited excellent capacitive performance with a specific capacitance of 789.2 Fg−1 calculated at a 5-mV/s−1 scan rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.S. Borges, A.L.M. Reddy, M.-T.F. Rodrigues, H. Gullapalli, K. Balakrishnan, G.G. Silva, and P.M. Ajayan, Supercapacitor operating at 200 degrees Celsius. Sci. Rep. 3, 1 (2013).

    Article  Google Scholar 

  2. R. Lakra, R. Kumar, P.K. Sahoo, D. Sharma, D. Thatoi, and A. Soam, Facile synthesis of cobalt oxide and graphene nanosheets nanocomposite for aqueous supercapacitor application. Carbon Trends 7, 100144 (2022).

    Article  CAS  Google Scholar 

  3. A. Soam, R. Kumar, P.K. Sahoo, C. Mahender, B. Kumar, N. Arya, M. Singh, S. Parida, and R.O. Dusane, Synthesis of nickel ferrite nanoparticles supported on graphene nanosheets as composite electrodes for high performance supercapacitor. ChemistrySelect 4(34), 9952 (2019).

    Article  CAS  Google Scholar 

  4. A. Soam, R. Kumar, D. Thatoi, and M. Singh, Electrochemical performance and working voltage optimization of nickel ferrite/graphene composite based supercapacitor. J. Inorg. Organometall. Polym. Mater. 30(9), 3325 (2020).

    Article  CAS  Google Scholar 

  5. A. Soam, C. Mahender, R. Kumar, and M. Singh, Power performance of BFO-graphene composite electrodes based supercapacitor. Mater. Res. Express 6(2), 025054 (2018).

    Article  Google Scholar 

  6. R. Lakra, R. Kumar, P.K. Sahoo, D. Thatoi, and A. Soam, A mini-review: graphene based composites for supercapacitor application. Inorg. Chem. Commun. 133, 108929 (2021).

    Article  CAS  Google Scholar 

  7. B.B. Sahoo, N. Kumar, H.S. Panda, B. Panigrahy, N.K. Sahoo, A. Soam, B.S. Mahanto, and P.K. Sahoo, Self-assembled 3D graphene-based aerogel with Au nanoparticles as high-performance supercapacitor electrode. J. Energy Storage 43, 103157 (2021).

    Article  Google Scholar 

  8. R. Lakra, R. Kumar, P.K. Sahoo, S. Kumar, A. Soam, Iron Oxide Nanoparticles (IntechOpen, 2022). https://doi.org/10.5772/intechopen.105001

  9. S.Z. Hussain, M. Ihrar, S.B. Hussain, W.C. Oh, and K. Ullah, A review on graphene based transition metal oxide composites and its application towards supercapacitor electrodes. SN Appl. Sci. 2(4), 1 (2020).

    Article  Google Scholar 

  10. Q. Ke, and J. Wang, Graphene-based materials for supercapacitor electrodes—a review. J. Materiomics 2, 37 (2016).

    Article  Google Scholar 

  11. A. Soam, R. Kumar, C. Mahender, M. Singh, D. Thatoi, and R.O. Dusane, Development of paper-based flexible supercapacitor: bismuth ferrite/graphene nanocomposite as an active electrode material. J. Alloys Compd. 813, 152145 (2020).

    Article  CAS  Google Scholar 

  12. M.B. Askari, and P. Salarizadeh, Binary nickel ferrite oxide (NiFe2O4) nanoparticles coated on reduced graphene oxide as stable and high-performance asymmetric supercapacitor electrode material. Int. J. Hydrog. Energy 45(51), 27482 (2020).

    Article  CAS  Google Scholar 

  13. W. Zhang, Y. Wang, X. Guo, Y. Liu, Y. Zheng, M. Zhang, R. Li, Z. Peng, Z. Wang, and T. Zhang, High performance Bi2O2CO3/rGO electrode material for asymmetric solid-state supercapacitor application. J. Alloy Compd. 855, 157394 (2021).

    Article  CAS  Google Scholar 

  14. Yu. Yang, F. Ma, J. Wang, J. Li, J. Cao, W. Han, Gu. Huisi, and Y. Zhang, Comparative analysis of Co9S8/S-doped rGO composites as high-performance electrodes via facile one-step anneal fabrication for supercapacitor application. J. Alloy Compd. 815, 152448 (2020).

    Article  CAS  Google Scholar 

  15. N.R. Chodankar, D.P. Dubal, S.-H. Ji, and D.-H. Kim, Highly efficient and stable negative electrode for asymmetric supercapacitors based on graphene/FeCo2O4 nanocomposite hybrid material. Electrochim. Acta 295, 195 (2019).

    Article  CAS  Google Scholar 

  16. H. Liu, J. Zhu, Z. Li, Z. Shi, J. Zhu, and H. Mei, Fe2O3/N doped rGO anode hybridized with NiCo LDH/Co(OH)2 cathode for battery-like supercapacitor. Chem. Eng. J. 403, 126325 (2021).

    Article  CAS  Google Scholar 

  17. A.M. Patil, X. An, S. Li, X. Yue, X. Du, A. Yoshida, X. Hao, A. Abudula, and G. Guan, Fabrication of three-dimensionally heterostructured rGO/WO3·0.5 H2O@ Cu2S electrodes for high-energy solid-state pouch-type asymmetric supercapacitor. Chem. Eng. J. 403, 126411 (2021).

    Article  CAS  Google Scholar 

  18. J. Jose, J. Vigneshwaran, A. Baby, R. Viswanathan, S.P. Jose, and P.B. Sreeja, Dimensionally engineered ternary nanocomposite of reduced graphene oxide/multiwalled carbon nanotubes/zirconium oxide for supercapacitors. J. Alloys Compd. 896, 163067 (2022).

    Article  CAS  Google Scholar 

  19. H. Yang, S. Kannappan, A.S. Pandian, J.H. Jang, Y.S. Lee, and W. Lu, Nanoporous graphene materials by low-temperature vacuum-assisted thermal process for electrochemical energy storage. J. Power Sources 284, 146 (2015).

    Article  CAS  Google Scholar 

  20. A.G. Olatoye, J. Zhang, Q. Wang, E. Cao, W. Li, E.O. Fagbohun, and Y. Cui, Synthesis of γ-MnS/nanoporous carbon/reduced graphene oxide composites for high-performance supercapacitor. Carbon Resour. Convers. 5(3), 222 (2022).

    Article  Google Scholar 

  21. S.K. Kaverlavani, S.E. Moosavifard, and A. Bakouei, Designing graphene-wrapped nanoporous CuCo2O4 hollow spheres electrodes for high-performance asymmetric supercapacitors. J. Mater. Chem. A 5, 14301 (2017).

    Article  CAS  Google Scholar 

  22. H. Pourfarzad, M. Shabani-Nooshabadi, M.R. Ganjali, and H. Kashani, Synthesis of Ni-Co-Fe layered double hydroxide and Fe2O3/graphene nanocomposites as actively materials for high electrochemical performance supercapacitors. Electrochim. Acta 317, 83 (2019).

    Article  CAS  Google Scholar 

  23. M.M. Vadiyar, S.S. Kolekar, J.-Y. Chang, A.A. Kashale, and A.V. Ghule, Reflux condensation mediated deposition of Co3O4 nanosheets and ZnFe2O4 nanoflakes electrodes for flexible asymmetric supercapacitor. Electrochim. Acta 222, 1604 (2016).

    Article  CAS  Google Scholar 

  24. B.J. Rani, G. Ravi, R. Yuvakkumar, V. Ganesh, S. Ravichandran, M. Thambidurai, A.P. Rajalakshmi, and A. Sakunthala, Pure and cobalt-substituted zinc-ferrite magnetic ceramics for supercapacitor applications. Appl. Phys. A 124(7), 1 (2018).

    Article  CAS  Google Scholar 

  25. M. Zhu, X. Zhang, Y. Zhou, C. Zhuo, J. Huang, and S. Li, Facile solvothermal synthesis of porous ZnFe2O4 microspheres for capacitive pseudocapacitors. RSC Adv. 5, 39270 (2015).

    Article  CAS  Google Scholar 

  26. Z. Zhang, X. Zhang, Y. Feng, X. Wang, Q. Sun, Y. Deyang, W. Tong, X. Zhao, and X. Liu, Fabrication of porous ZnCo2O4 nanoribbon arrays on nickel foam for high-performance supercapacitors and lithium-ion batteries. Electrochim. Acta 260, 823 (2018).

    Article  CAS  Google Scholar 

  27. V.S. Kumbhar, A.D. Jagadale, N.M. Shinde, and C.D. Lokhande, Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application. Appl. Surf. Sci. 259, 39 (2012).

    Article  CAS  Google Scholar 

  28. B. Mordina, R. Kumar, N.S. Neeraj, A.K. Srivastava, D.K. Setua, and A. Sharma, Binder free high performance hybrid supercapacitor device based on nickel ferrite nanoparticles. J. Energy Storage 31, 101677 (2020).

    Article  Google Scholar 

  29. B. Bhujun, M.T.T. Tan, and A.S. Shanmugam, Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications. Results Phys. 7, 345 (2017).

    Article  Google Scholar 

  30. M.M. Vadiyar, S.C. Bhise, S.K. Patil, S.A. Patil, D.K. Pawar, A.V. Ghule, P.S. Patil, and S.S. Kolekar, Mechanochemical growth of a porous ZnFe2O4 nano-flake thin film as an electrode for supercapacitor application. RSC Adv. 5, 45935 (2015).

    Article  CAS  Google Scholar 

  31. M.M. Vadiyar, S.C. Bhise, S.K. Patil, S.S. Kolekar, J.-Y. Chang, and A.V. Ghule, Comparative study of individual and mixed aqueous electrolytes with ZnFe2O4 nano-flakes thin film as an electrode for supercapacitor application. ChemistrySelect 1, 959 (2016).

    Article  CAS  Google Scholar 

  32. A. Soam, Ferrites (IntechOpen, 2021). https://doi.org/10.5772/intechopen.99381

  33. A.V. Shinde, S.J. Patil, S.K. Hwang, G.S.R. Raju, Y.S. Huh, Y.K. Han, and N.R. Chodankar, Surface modified zinc ferrite as a carbon-alternative negative electrode for high-energy hybrid supercapacitor. Ceram. Int. 47(11), 16333 (2021).

    Article  CAS  Google Scholar 

  34. A. Shanmugavani, and R. Kalai Selvan, Synthesis of ZnFe2O4 nanoparticles and their asymmetric configuration with Ni(OH)2 for a pseudocapacitor. RSC Adv. 4, 27022 (2014).

    Article  CAS  Google Scholar 

  35. A.K. Ghasemi, M. Ghorbani, M.S. Lashkenari, and N. Nasiri, Controllable synthesis of zinc ferrite nanostructure with tunable morphology on polyaniline nanocomposite for supercapacitor application. J. Energy Storage 51, 104579 (2022).

    Article  Google Scholar 

  36. M.M. Vadiyar, S.S. Kolekar, J.-Y. Chang, Z. Ye, and A.V. Ghule, Anchoring ultrafine ZnFe2O4/C nanoparticles on 3D ZnFe2O4 nanoflakes for boosting cycle stability and energy density of flexible asymmetric supercapacitor. ACS Appl. Mater. Interfaces. 9, 26016 (2017).

    Article  CAS  Google Scholar 

  37. A. Morenghi, S. Scaravonati, G. Magnani, M. Sidoli, L. Aversa, R. Verucchi, G. Bertoni, M. Riccò, D. Pontiroli, Asymmetric supercapacitors based on nickel decorated graphene and porous graphene electrodes. Electrochim. Acta 424, 140626 (2022).

  38. S. Su, H. Dai, Y. Lin, X. Xiang, Y. Jiang, and X. Zhu, Design and realization of binder-free electrodes with leaf-like structure based on Fe–Co binary oxides/graphene enabling efficient energy storage of flexible solid-state supercapacitors. J. Energy Storage 50, 104699 (2022).

    Article  Google Scholar 

  39. T. Cetinkaya, and R.A.W. Dryfe, Electrical double layer supercapacitors based on graphene nanoplatelets electrodes in organic and aqueous electrolytes: effect of binders and scalable performance. J. Power Sources 408, 91 (2018).

    Article  CAS  Google Scholar 

  40. M. Zaheer, and H.N. Abbasi, Fabrication and haracterization of graphene coated nickel electrodes with internally stacked double layer supercapacitors. Ain Shams Eng. J. 13, 101795 (2022).

    Article  Google Scholar 

  41. P. Zaccagnini, D. di Giovanni, M.G. Gomez, S. Passerini, A. Varzi, and A. Lamberti, Flexible and high temperature supercapacitor based on laser-induced graphene electrodes and ionic liquid electrolyte, a de-rated voltage analysis. Electrochim. Acta 357, 136838 (2020).

    Article  CAS  Google Scholar 

  42. L. Manjakkal, C.G. Núñez, W. Dang, and R. Dahiya, Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy 51, 604 (2018).

    Article  CAS  Google Scholar 

  43. M. Horn, B. Gupta, J. MacLeod, J. Liu, and N. Motta, Graphene-based supercapacitor electrodes: addressing challenges in mechanisms and materials. Curr. Opin. Green Sustain. Chem. 17, 42 (2019).

    Article  Google Scholar 

  44. N. Srivastava, T. Patodia, A. Yadav, D. Yadav, N. Jakhar, K.B. Sharma, and B. Tripathi, Graphene derivative based high dielectric constant polymer composite electrodes for supercapacitors. Mater. Today Proc. 42, 1657 (2021).

    Article  CAS  Google Scholar 

  45. R. Tamilselvi, M. Ramesh, G.S. Lekshmi, O. Bazaka, I. Levchenko, K. Bazaka, and M. Mandhakini, Graphene oxide–based supercapacitors from agricultural wastes: a step to mass production of highly efficient electrodes for electrical transportation systems. Renew. Energy 151, 731 (2020).

    Article  CAS  Google Scholar 

  46. R.M. Borade, S.B. Somvanshi, S.B. Kale, R.P. Pawar, and K.M. Jadhav, Spinel zinc ferrite nanoparticles: an active nanocatalyst for microwave irradiated solvent free synthesis of chalcones. Mater. Res. Express 7, 016116 (2020).

    Article  CAS  Google Scholar 

  47. S. Patade, D. Andhare, S. Somvanshi, P.B. Kharat, and K.M. Jadhav, Preparation and characterizations of magnetic nanofluid of zinc ferrite for hyperthermia application. Nanomater. Energy 9, 1 (2018).

    Google Scholar 

  48. S.R. Patade, D.D. Andhare, S.B. Somvanshi, P.B. Kharat, S.D. More, and K.M. Jadhav, Preparation and characterisations of magnetic nanofluid of zinc ferrite for hyperthermia. Nanomater. Energy 9, 8 (2020).

    Article  Google Scholar 

  49. S. Yang, Z. Han, F. Zheng, J. Sun, Z. Qiao, X. Yang, L. Li, C. Li, X. Song, and B. Cao, ZnFe2O4 nanoparticles-cotton derived hierarchical porous active carbon fibers for high rate-capability supercapacitor electrodes. Carbon 134, 15 (2018).

    Article  CAS  Google Scholar 

  50. N. Sharma, V. Sharma, Y. Jain, M. Kumari, R. Gupta, S.K. Sharma, and K. Sachdev, Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application. Macromol. Symp. 376, 1700006 (2017).

    Article  Google Scholar 

  51. P. Singh, S. Gautam, P. Shandilya, B. Priya, V.P. Singh, and P. Raizada, Graphene bentonite supported ZnFe2O4 as superparamagnetic photocatalyst for antibiotic degradation. Adv. Mater. Lett. 8, 229 (2017).

    Article  CAS  Google Scholar 

  52. M.B. Askari, P. Salarizadeh, M. Seifi, and A. Di Bartolomeo, ZnFe2O4 nanorods on reduced graphene oxide as advanced supercapacitor electrodes. J. Alloys Compd. 860, 158497 (2021).

    Article  CAS  Google Scholar 

  53. H. Pang, Y. Ma, G. Li, J. Chen, J. Zhang, H. Zheng, and Du. Weimin, Facile synthesis of porous ZnO-NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials. Dalton Trans. 41, 13284 (2012).

    Article  CAS  Google Scholar 

  54. R.B. Rakhi, D. Cha, W. Chen, and H.N. Alshareef, Electrochemical energy storage devices using electrodes incorporating carbon nanocoils and metal oxides nanoparticles. J. Phys. Chem. C 115, 14392 (2011).

    Article  CAS  Google Scholar 

  55. C. Shen, X. Wang, W. Zhang, and F. Kang, A high-performance three-dimensional micro supercapacitor based on self-supporting composite materials. J. Power Sources 196, 10465 (2011).

    Article  CAS  Google Scholar 

  56. Y. Liu, R. Wang, and X. Yan, Synergistic effect between ultra-small nickel hydroxide nanoparticles and reduced graphene oxide sheets for the application in high-performance asymmetric supercapacitor. Sci. Rep. 5, 1 (2015).

    Google Scholar 

  57. Qi. Li, Hu. Xiaona, Q. Yang, Z. Yan, L. Kang, Z. Lei, Z. Yang, and Z. Liu, Electrocapacitive performance of graphene/Co3O4 hybrid material prepared by a nanosheet assembly route. Electrochim. Acta 119, 184 (2014).

    Article  CAS  Google Scholar 

  58. L. Niu, Z. Li, Xu. Ye, J. Sun, W. Hong, X. Liu, J. Wang, and S. Yang, Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 5, 8044 (2013).

    Article  CAS  Google Scholar 

  59. S.S. Raut, and B.R. Sankapal, First report on synthesis of ZnFe2O4 thin film using successive ionic layer adsorption and reaction: approach towards solid-state symmetric supercapacitor device. Electrochim. Acta 198, 203 (2016).

    Article  CAS  Google Scholar 

  60. M.M. Vadiyar, S.S. Kolekar, N.G. Deshpande, J.-Y. Chang, A.A. Kashale, and A.V. Ghule, Binder-free chemical synthesis of ZnFe2O4 thin films for asymmetric supercapacitor with improved performance. Ionics 23, 741 (2017).

    Article  CAS  Google Scholar 

  61. M.M. Vadiyar, S.C. Bhise, S.S. Kolekar, J.-Y. Chang, K.S. Ghule, and A.V. Ghule, Low cost flexible 3-D aligned and cross-linked efficient ZnFe2O4 nano-flakes electrode on stainless steel mesh for asymmetric supercapacitors. J. Mater. Chem. A 4, 3504 (2016).

    Article  CAS  Google Scholar 

  62. Lu. Mao, K. Zhang, H.S.O. Chan, and Wu. Jishan, Nanostructured MnO2/graphene composites for supercapacitor electrodes: the effect of morphology, crystallinity and composition. J. Mater. Chem. 22, 1845 (2012).

    Article  CAS  Google Scholar 

  63. B.R. Sankapal, H.B. Gajare, D.P. Dubal, R.B. Gore, R.R. Salunkhe, and H. Ahn, Presenting highest supercapacitance for TiO2/MWNTs nanocomposites: Novel method. Chem. Eng. J. 247, 103 (2014).

    Article  CAS  Google Scholar 

  64. D.P. Dubal, G.S. Gund, R. Holze, and C.D. Lokhande, Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. J. Power Sources 242, 687 (2013).

    Article  CAS  Google Scholar 

  65. Q. Liao, Na. Li, H. Cui, and C. Wang, Vertically-aligned graphene@ MnO nanosheets as binder-free high-performance electrochemical pseudocapacitor electrodes. J. Mater. Chem. A 1, 13715 (2013).

    Article  CAS  Google Scholar 

  66. S.K. Meher, P. Justin, and G.J.A.A.M. Ranga Rao, Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl. Mater. Interfaces 3, 2063 (2011).

    Article  CAS  Google Scholar 

  67. Z. Dan-Dan, S.-J. Bao, W.-J. Zhou, and H.-L. Li, Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem. Commun. 9, 869 (2007).

    Article  Google Scholar 

  68. W. Fan, Y.-Y. Xia, W.W. Tjiu, P.K. Pallathadka, C. He, and T. Liu, Nitrogen-doped graphene hollow nanospheres as novel electrode materials for supercapacitor applications. J. Power Sources 243, 973 (2013).

    Article  CAS  Google Scholar 

  69. J.-H. Zhong, A.-L. Wang, G.-R. Li, J.-W. Wang, Ou. Yan-Nan, and Y.-X. Tong, Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J. Mater. Chem. 22, 5656 (2012).

    Article  CAS  Google Scholar 

  70. F. Gao, J. Qu, Z. Zhao, Q. Zhou, B. Li, and J. Qiu, A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application. Carbon 80, 640 (2014).

    Article  CAS  Google Scholar 

  71. L. Li, H. Bi, S. Gai, F. He, P. Gao, Y. Dai, X. Zhang, D. Yang, M. Zhang, and P. Yang, Uniformly dispersed ZnFe2O4 nanoparticles on nitrogen-modified graphene for high-performance supercapacitor as electrode. Sci. Rep. 7, 1 (2017).

    Google Scholar 

  72. W. Fu, Y. Gong, M. Wang, Y. Yao, N. Wei, C. Zou, G. Yin, Z. Huang, X. Liao, and X. Chen, β-Ni (OH)2 nanosheets grown on graphene as advanced electrochemical pseudocapacitor materials with improved rate capability and cycle performance. Mater. Lett. 134, 107 (2014).

    Article  CAS  Google Scholar 

  73. M.L. Huang, C.D. Gu, X. Ge, X.L. Wang, and J.P. Tu, NiO nanoflakes grown on porous graphene frameworks as advanced electrochemical pseudocapacitor materials. J. Power Sources 259, 98 (2014).

    Article  CAS  Google Scholar 

  74. J. Xiao, L. Wan, S. Yang, F. Xiao, and S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 14, 831 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, Rajan Lakra would like to thank Ministry of Tribal Affair/ UGC, New Delhi, India for proving scholarship to conduct the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Soam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakra, R., Mahender, C., Singh, B.K. et al. ZnFe2O4 Nanoparticles Supported on Graphene Nanosheets for High-Performance Supercapacitor. J. Electron. Mater. 52, 2676–2684 (2023). https://doi.org/10.1007/s11664-023-10230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10230-2

Keywords

Navigation