Skip to main content
Log in

Effect of weight percentage and particle size of B4C reinforcement on physical and mechanical properties of powder metallurgy Al2024-B4C composites

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, Al2024-B4C composites containing 0, 5, 10 and 20 wt% of B4C particles with two different particle sizes (d50=49 μm and d50=5 μm) as reinforcement material were produced by a mechanical alloying method. Two new particle distribution models based on the size of reinforcement materials was developed. The microstructure of the Al2024-B4C composites was investigated using a scanning electron microscope. The effects of reinforcement particle size and weight percentage (wt%) on the physical and mechanical properties of the Al2024-B4C composites were determined by measuring the density, hardness and tensile strength values. The results showed that more homogenous dispersion of B4C powders was obtained in the Al2024 matrix using the mechanical alloying technique according to the conventional powder metallurgy method. Measurement of the density and hardness properties of the composites showed that density values decreased and hardness values increased with an increase in the weight fraction of reinforcement. Moreover, it was found that the effect of reinforcement size and reinforcement content (wt%) on the homogeneous distribution of B4C particles is as important as the effect of milling time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Hernandez Rivera, J. J. Cruz Rivera, V. P. del Angel, V. G. Febles, O. C. Alonso, and R. M. Sanchez, Mater. Design 37, 96 (2012).

    Article  Google Scholar 

  2. M. Khakbiz and F. Akhlaghi, J. Alloys Compd. 479, 334 (2009).

    Article  CAS  Google Scholar 

  3. A. Alizadeh and E. Taheri-Nassaj, Mater. Charact. 67, 119 (2012).

    Article  CAS  Google Scholar 

  4. Z. Wang, M. Song, C. Sun, D. Xiao, and Y. He, Mater. Sci. Eng. A 527, 6537 (2010).

    Article  Google Scholar 

  5. A. Canakci, S. Ozsahin and T. Varol, Powder Technol. 228, 26 (2012).

    Article  CAS  Google Scholar 

  6. S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and V. K. Iyer, Powder Technol. 209, 124 (2011).

    Article  CAS  Google Scholar 

  7. M. Razavi, M. S. Yaghmaee, M. R. Rahimipour, and S. S. Razavi Tousi, Int. J. of Mineral Process 94, 97 (2010).

    Article  CAS  Google Scholar 

  8. R. M. Mohanty, K. Balasubramanian, and S. K. Seshadri, Mater. Sci. Eng. A 498, 42 (2008).

    Article  Google Scholar 

  9. I. Topcu, H. O. Gulsoy, N. Kadioglu, and A. N. Gulluoglu, J. Alloys Compd. 482, 516 (2009).

    Article  CAS  Google Scholar 

  10. A. Slipenyuk, V. Kuprin, Y. Milman, J. E. Spowart, and D. B. Miracle, Mater. Sci. Eng. A 381, 165 (2004).

    Article  Google Scholar 

  11. H. Abdoli, E. Salahi, H. Farnoush, and K. Pourazrang, J. Alloys Compd. 461, 166 (2008).

    Article  CAS  Google Scholar 

  12. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).

    Article  CAS  Google Scholar 

  13. S. S Razavi Tousi, R. Yazdani, E. Salahi, and I. Mobasherpour, Powder Technol. 320, 591 (2009).

    Google Scholar 

  14. C. Nie, J. Gu, J. Liu, and D. Zhang, J. Alloys Compd. 454, 118 (2008).

    Article  CAS  Google Scholar 

  15. M. Tahari, M. Shamanian, and M. Salehi, J. Alloys Compd. 525, 44 (2012).

    Article  CAS  Google Scholar 

  16. N. Parvin, R. Assadifarda, P. Safarzadeha, S. Sheibani, and P. Marashi, Mater. Sci. Eng. A 492, 134 (2008).

    Article  Google Scholar 

  17. J. B. Fogagnolo, F. Velasco, M. H. Robert, and J. M. Torralba, Mater. Sci. Eng. A 342, 131 (2003).

    Article  Google Scholar 

  18. H. R. Hafizpour, A. Simchi, and S. Parvizi, Adv. Powder Technol. 21, 273 (2010).

    Article  CAS  Google Scholar 

  19. E. Salahinejada, R. Aminib, and M. J. Hadianfard, Mater. Sci. Eng. A 527, 5522 (2010).

    Article  Google Scholar 

  20. A. Genc and M. L. Ovecoglu, J. Alloys Compd. 508, 162 (2010).

    Article  CAS  Google Scholar 

  21. J. Lee, F. Zhou, K. H. Chung, N. J. Kim, and E. J. Lavernia, Metall. Mater. Trans. A 32, 3109 (2001).

    Article  Google Scholar 

  22. F. Karimzadeh, M. H. Enayati, and M. Tavoosi, Mater. Sci. Eng. A 486, 45 (2008).

    Article  Google Scholar 

  23. N. Chawla and Y. L. Shen, Adv. Eng. Mater. 3, 357 (2001).

    Article  CAS  Google Scholar 

  24. Z. Wang, M. Song, C. Sun, D. Xiao, and Y. He, Mater. Sci. Eng. A 527, 6537 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Canakci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varol, T., Canakci, A. Effect of weight percentage and particle size of B4C reinforcement on physical and mechanical properties of powder metallurgy Al2024-B4C composites. Met. Mater. Int. 19, 1227–1234 (2013). https://doi.org/10.1007/s12540-013-6014-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-6014-y

Key words

Navigation