Skip to main content
Log in

Grain growth of nanocrystalline Ni powders prepared by cryomilling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Grain growth of nanocrystalline Ni powders with an average grain size of ∼22 nm prepared by cryogenic mechanical milling (or cryomilling) was investigated by using X-ray diffraction (XRD) and transmission electron microscopy (TEM). A dispersion of NiO and Ni3N particles with a size less than 5 nm was formed in the cryomilled powders. The Ni3N particles decomposed at 773 K. It was found that at 0.56 homologous temperature (T/T M ), Ni grains were retained at ∼150 nm even after long annealing times (e.g., 4 hours). For 0.45 to 0.62 T/T M , the time exponent n deduced from D 1/nD 1/n0 =kt was 0.16 to 0.32, tending toward 0.5 as T/T M increased. The activation energy for grain growth in the Ni sample was determined to be 113 kJ/mol, which is close to the activation energy for grain boundary self-diffusion in polycrystalline Ni. The observed high grain size stability was attributed primarily to a grain boundary pinning mechanism arising from the NiO particles as well as impurity segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter: Acta Mater., 2000, vol. 48, pp. 1–29.

    Article  CAS  Google Scholar 

  2. J. Verhoeven: Fundamentals of Physical Metallurgy, John Wiley & Sons, New York, NY, 1975, p. 204.

    Google Scholar 

  3. J. Eckert, J.C. Holzer, and W.L. Johnson: J. Appl. Phys., 1993, vol. 73, pp. 131–41.

    Article  CAS  Google Scholar 

  4. R.J. Perez, H.G. Jiang, C.P. Dogan, and E.J. Lavernia: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2469–75.

    CAS  Google Scholar 

  5. K. Boylan, D. Ostrander, U. Erb, G. Palumbo, and K.T. Aust: Scripta Metall. Mater., 1991, vol. 25, pp. 2711–16.

    Article  CAS  Google Scholar 

  6. D.G. Morris and M.A. Morris: Acta Metall. Mater., 1991, vol. 39, pp. 1763–70.

    Article  CAS  Google Scholar 

  7. T.R. Malow and C.C. Koch: Acta Mater., 1997, vol. 45, pp. 2177–86.

    Article  CAS  Google Scholar 

  8. P. Knauth, A. Charai, and P. Gas: Scripta Metall. Mater., 1993, vol. 28, pp. 325–30.

    Article  CAS  Google Scholar 

  9. H.J. Höfler and R.S. Averback: Scripta Metall. Mater., 1990, vol. 24, pp. 2401–06.

    Article  Google Scholar 

  10. C. Bansal, Z. Gao, and B. Fultz: Nanostr. Mater., 1995, vol. 5, pp. 327–36.

    Article  CAS  Google Scholar 

  11. B. Huang, R.J. Perez, and E.J. Lavernia: Mater. Sci. Eng. A, 1998, vol. A255, pp. 124–32.

    CAS  Google Scholar 

  12. K.H. Chung, J. Lee, R. Rodriguez, and E.J. Lavernia: Metall. Mater. Trans. A, 2001, vol. 32A, in press.

  13. F. Zhou, J. Lee, and E.J. Lavernia: Scripta Mater., 2001, vol. 44, pp. 2013–17.

    Article  CAS  Google Scholar 

  14. M.J. Luton, C.S. Jayanth, M.M. Disco, S. Matras, and J. Vallone: in Multicomponent Ultrafine Microstructures, L.E. McCandlish, B.H. Kear, D.E. Polk, and R.W. Siegel, eds. Materials Research Society, Pittsburgh, PA, 1989, pp. 79–86.

    Google Scholar 

  15. M. Kambara, K. Uenishi, and K.F. Kobayashi: J. Mater. Sci., 2000, vol. 35, pp. 2897–2905.

    Article  CAS  Google Scholar 

  16. C. Suryanarayana and M. Norton: X-ray Diffraction: A Practical Approach, Plenum Press, New York, NY, 1998, p. 207.

    Google Scholar 

  17. J. Eckert, J.C. Holzer, C.E. Krill III, and W.L. Johnson: J. Mater. Res., 1992, vol. 7, pp. 1751–61.

    CAS  Google Scholar 

  18. H. Fecht, E. Hellstern, Z. Fu, and W.L. Johnson: Metall. Trans. A, 1990, vol. 21A, pp. 2333–37.

    CAS  Google Scholar 

  19. C.C. Koch: Nanostr. Mater., 1997, vol. 9, pp. 13–22.

    Article  CAS  Google Scholar 

  20. F. Zhou, K.H. Chung, and E.J. Lavernia: in Powder Metallurgy and Particulate Materials for Industrial Applications, A. Alman and J. Newkirk, eds., TMS, Warrendale, PA, 2000, pp. 167–77.

    Google Scholar 

  21. P.S. Gilman and J.S. Benjamin: Ann. Rev. Mater. Sci., 1983, vol. 13, pp. 279–300.

    Article  CAS  Google Scholar 

  22. M.L. Lau, H.G. Jiang, W. Nuchter, and E.J. Lavernia: Phys. Status Solidi (A), 1998, vol. 166, pp. 257–68.

    Article  CAS  Google Scholar 

  23. B. Huang, J. Vallone, and M.J. Luton: Nanostr. Mater., 1995, vol. 5, pp. 631–42.

    Article  CAS  Google Scholar 

  24. C. Smithells: Metals Reference Book, 5th ed., Butterworth and Co., London, 1976, p. 205.

    Google Scholar 

  25. K.Y. Wang, T.D. Shen, H.G. Jiang, M.X. Quan, and W.D. Wei: Mater. Sci. Eng. A, 1994, vol. 179, pp. 215–19.

    Article  Google Scholar 

  26. W. McClune: Powder Diffraction File Alphabetical Index, Inorganic Phases, JCPDS International Center for Diffraction Data, Swarthmore, PA, 1988.

    Google Scholar 

  27. T.B. Massalski: Binary Alloy Phase Diagrams, 2nd ed., ASM INTERNATIONAL, Materials Park, OH, 1990.

    Google Scholar 

  28. U. Klement, U. Erb, A.M. El-Sherik, and K.T. Aust: Mater. Sci. Eng. A, 1995, vol. 203, pp. 177–86.

    Article  Google Scholar 

  29. R. Juza and W. Sachsze: Z. Anorg. Chem., 1943, vol. 251, p. 201.

    Article  CAS  Google Scholar 

  30. L. Maya, T. Thundat, J.R. Thompson, and R.J. Stevenson: Appl. Phys. Lett., 1995, vol. 67, pp. 3034–36.

    Article  CAS  Google Scholar 

  31. C.S. Smith: Trans. AIME, 1948, vol. 175, pp. 15–51.

    Google Scholar 

  32. Ö.N. Dogan, G.M. Michael, and H.W. Kwon: Metall. Trans. A, 1992, vol. 23, pp. 2121–29.

    Google Scholar 

  33. P.A. Beck, J.C. Kremer, L.J. Demer, and M.L. Holzworth: Trans. AIME, 1948, vol. 175, pp. 372–94.

    Google Scholar 

  34. J.E. Burke: Trans. AIME, 1949, vol. 180, pp. 73–91.

    Google Scholar 

  35. R.A. Vandermeer and H. Hu: Acta Metall. Mater., 1994, vol. 42, pp. 3071–75.

    Article  CAS  Google Scholar 

  36. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, Pergamon Press, Elmsford, NY, 1982, p. 21.

    Google Scholar 

  37. W. Dickenscheid, R. Birringer, H. Gleiter, O. Kanert, B. Michel, and B. Günther: Solid State Commun., 1991, vol. 79, pp. 683–86.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Zhou, F., Chung, K.H. et al. Grain growth of nanocrystalline Ni powders prepared by cryomilling. Metall Mater Trans A 32, 3109–3115 (2001). https://doi.org/10.1007/s11661-001-0185-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0185-8

Keywords

Navigation