Skip to main content

Advertisement

Log in

GEnDDn: An lncRNA–Disease Association Identification Framework Based on Dual-Net Neural Architecture and Deep Neural Network

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Accumulating studies have demonstrated close relationships between long non-coding RNAs (lncRNAs) and diseases. Identification of new lncRNA–disease associations (LDAs) enables us to better understand disease mechanisms and further provides promising insights into cancer targeted therapy and anti-cancer drug design. Here, we present an LDA prediction framework called GEnDDn based on deep learning. GEnDDn mainly comprises two steps: First, features of both lncRNAs and diseases are extracted by combining similarity computation, non-negative matrix factorization, and graph attention auto-encoder, respectively. And each lncRNA–disease pair (LDP) is depicted as a vector based on concatenation operation on the extracted features. Subsequently, unknown LDPs are classified by aggregating dual-net neural architecture and deep neural network. Using six different evaluation metrics, we found that GEnDDn surpassed four competing LDA identification methods (SDLDA, LDNFSGB, IPCARF, LDASR) on the lncRNADisease and MNDR databases under fivefold cross-validation experiments on lncRNAs, diseases, LDPs, and independent lncRNAs and independent diseases, respectively. Ablation experiments further validated the powerful LDA prediction performance of GEnDDn. Furthermore, we utilized GEnDDn to find underlying lncRNAs for lung cancer and breast cancer. The results elucidated that there may be dense linkages between IFNG-AS1 and lung cancer as well as between HIF1A-AS1 and breast cancer. The results require further biomedical experimental verification. GEnDDn is publicly available at https://github.com/plhhnu/GEnDDn.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

Datasets and codes are publicly available at https://github.com/plhhnuGEnDDn.

Code Availability

Datasets and codes are publicly available at https://github.com/plhhnu/GEnDDn.

References

  1. Ma L, Zhang Z (2023) The contribution of databases towards understanding the universe of long non-coding RNAs. Nat Rev Mol Cell Biol 24(9):601–602. https://doi.org/10.1038/s41580-023-00612-z

    Article  CAS  PubMed  Google Scholar 

  2. Sheng N, Huang L, Lu Y et al (2023) Data resources and computational methods for lncRNA–disease association prediction. Comput Biol Med 153:106527. https://doi.org/10.1016/j.compbiomed.2022.106527

    Article  CAS  PubMed  Google Scholar 

  3. Peng L, Tan J, Tian X et al (2022) EnANNDeep: an ensemble-based lncRNA–protein interaction prediction framework with adaptive k-nearest neighbor classifier and deep models. Interdiscip Sci 14(1):209–232. https://doi.org/10.1007/s12539-021-00483-y

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Z, Xu J, Wu Y et al (2023) CapsNet-LDA: predicting lncRNA-disease associations using attention mechanism and capsule network based on multi-view data. Brief Bioinform 24(1):bbac531. https://doi.org/10.1093/bib/bbac531

    Article  CAS  PubMed  Google Scholar 

  5. Guo H, Zhao T (2023) Multiple mutations of IFITM3 are associated with COVID-19 susceptibilityregulation function of IFITM3 in COVID-19. J Infect 86(6):614–616. https://doi.org/10.1016/j.jinf.2023.02.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen X, Huang L (2023) Computational model for disease research. Brief Bioinform 24(1):bbac615. https://doi.org/10.1093/bib/bbac615

    Article  PubMed  Google Scholar 

  7. Wang W, Zhang L, Sun J et al (2022) Predicting the potential human lncRNA–miRNA interactions based on graph convolution network with conditional random field. Brief Bioinform 23(6):bbac463. https://doi.org/10.1093/bib/bbac463

    Article  CAS  PubMed  Google Scholar 

  8. Chen X, Yan CC, Zhang X et al (2017) Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform 18(4):558–576. https://doi.org/10.1093/bib/bbw060

    Article  CAS  PubMed  Google Scholar 

  9. Chen X, Sun Y, Guan N et al (2019) Computational models for lncRNA function prediction and functional similarity calculation. Brief Funct Genom 18(1):58–82. https://doi.org/10.1093/bfgp/ely031

    Article  CAS  Google Scholar 

  10. Xie G-B, Chen R-B, Lin Z et al (2023) Predicting lncRNA–disease associations based on combining selective similarity matrix fusion and bidirectional linear neighborhood label propagation. Brief Bioinform 24(1):bbac595. https://doi.org/10.1093/bib/bbac595

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Jin F, Li Y (2021) A novel autophagy-related lncRNA prognostic risk model for breast cancer. J Cell Mol Med 25(1):4–14. https://doi.org/10.1111/jcmm.15980

    Article  CAS  PubMed  Google Scholar 

  12. Liu S, Sun Y, Hou Y et al (2021) A novel lncRNA ROPM-mediated lipid metabolism governs breast cancer stem cell properties. J Hematol Oncol 14:1–23. https://doi.org/10.1186/s13045-021-01194-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu Z, Lu Z, Li L et al (2022) Identification and validation of ferroptosis-related LncRNA signatures as a novel prognostic model for colon cancer. Front Immunol 12:783362. https://doi.org/10.3389/fimmu.2021.783362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu Q, Ma H, Chen H et al (2022) LncRNA in tumorigenesis of non-small-cell lung cancer: from bench to bedside. Cell Death Discov 8(1):359. https://doi.org/10.1038/s41420-022-01157-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He Y, Jiang X, Duan L et al (2021) LncRNA PKMYT1AR promotes cancer stem cell maintenance in non-small cell lung cancer via activating Wnt signaling pathway. Mol Cancer 20(1):1–21. https://doi.org/10.1186/s12943-021-01469-6

    Article  CAS  Google Scholar 

  16. Chen X, Huang L (2022) Computational model for ncRNA research. Brief Bioinform 23(6):bbac472. https://doi.org/10.1093/bib/bbac472

    Article  PubMed  Google Scholar 

  17. Wang H, Tang J, Ding Y et al (2021) Exploring associations of non-coding RNAs in human diseases via three-matrix factorization with hypergraph-regular terms on center kernel alignment. Brief Bioinform 22(5):bbaa409. https://doi.org/10.1093/bib/bbaa409

    Article  CAS  PubMed  Google Scholar 

  18. Zhao J, Zhao B, Song X et al (2023) Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data. Brief Bioinform 24(2):bbad025. https://doi.org/10.1093/bib/bbad025

    Article  PubMed  Google Scholar 

  19. Chen X, Sun L, Zhao Y (2021) NCMCMDA: miRNA–disease association prediction through neighborhood constraint matrix completion. Brief Bioinform 22(1):485–496. https://doi.org/10.1093/bib/bbz159

    Article  CAS  PubMed  Google Scholar 

  20. Wu J, Zhao X, Zhao X et al (2023) Multi-view contrastive heterogeneous graph attention network for lncRNA–disease association prediction. Brief Bioinform 24(1):bbac548. https://doi.org/10.1093/bib/bbac548

    Article  CAS  PubMed  Google Scholar 

  21. Chen X, Yan G (2013) Novel human lncRNA–disease association inference based on lncRNA expression profiles. Bioinformatics 29(20):2617–2624. https://doi.org/10.1093/bioinformatics/btt426

    Article  CAS  PubMed  Google Scholar 

  22. Lu C, Yang M, Li M et al (2019) Predicting human lncRNA–disease associations based on geometric matrix completion. IEEE J Biomed Health 24(8):2420–2429. https://doi.org/10.1109/JBHI.2019.2958389

    Article  Google Scholar 

  23. Xie G, Huang B, Sun Y et al (2021) RWSF-BLP: a novel lncRNA–disease association prediction model using random walk-based multi-similarity fusion and bidirectional label propagation. Mol Genet Genom 296:473–483. https://doi.org/10.1007/s00438-021-01764-3

    Article  CAS  Google Scholar 

  24. Xie G, Zhu Y, Lin Z et al (2022) HBRWRLDA: predicting potential lncRNA–disease associations based on hypergraph bi-random walk with restart. Mol Genet Genom 297(5):1215–1228. https://doi.org/10.1007/s00438-022-01909-y

    Article  CAS  Google Scholar 

  25. Zhang G, Gao Y (2023) BRWMC: predicting lncRNA–disease associations based on bi-random walk and matrix completion on disease and lncRNA networks. Comput Biol Chem 103:107833. https://doi.org/10.1016/j.compbiolchem.2023.107833

    Article  CAS  PubMed  Google Scholar 

  26. Xie G-B, Liu S, Gu G-S et al (2023) LUNCRW: prediction of potential lncRNA–disease associations based on unbalanced neighborhood constraint random walk. Anal Biochem 679:115297. https://doi.org/10.1016/j.ab.2023.115297

    Article  CAS  PubMed  Google Scholar 

  27. Huang L, Zhang L, Chen X (2022) Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models. Brief Bioinform 23(5):bbac358. https://doi.org/10.1093/bib/bbac358

    Article  CAS  PubMed  Google Scholar 

  28. Yu G, Wang Y, Wang J et al (2020) Attributed heterogeneous network fusion via collaborative matrix tri-factorization. Inform Fusion 63:153–165. https://doi.org/10.1016/j.inffus.2020.06.012

    Article  Google Scholar 

  29. Qiu S, Wang M, Yang Y et al (2023) Meta multi-instance multi-label learning by heterogeneous network fusion. Inform Fusion 94:272–283. https://doi.org/10.1016/j.inffus.2023.02.010

    Article  Google Scholar 

  30. Jiang Q, Ma R, Wang J et al (2015) LncRNA2Function: a comprehensive resource for functional investigation of human lncRNAs based on RNA-seq data. In: BMC genomics, vol 16, no 3. BioMed Central, pp 1–11. https://doi.org/10.1186/1471-2164-16-S3-S2

  31. Feng H, Jin D, Li J et al (2023) Matrix reconstruction with reliable neighbors for predicting potential MiRNA–disease associations. Brief Bioinform 24(1):bbac571. https://doi.org/10.1093/bib/bbac571

    Article  CAS  PubMed  Google Scholar 

  32. Chu Y, Wang X, Dai Q et al (2021) MDA-GCNFTG: identifying miRNA–disease associations based on graph convolutional networks via graph sampling through the feature and topology graph. Brief Bioinform 22(6):bbab165. https://doi.org/10.1093/bib/bbab165

    Article  CAS  PubMed  Google Scholar 

  33. Chen X, Xie D, Zhao Q et al (2019) MicroRNAs and complex diseases: from experimental results to computational models. Brief Bioinform 20(2):515–539. https://doi.org/10.1093/bib/bbx130

    Article  CAS  PubMed  Google Scholar 

  34. Fu G, Wang J, Domeniconi C et al (2018) Matrix factorization-based data fusion for the prediction of lncRNA–disease associations. Bioinformatics 34(9):1529–1537. https://doi.org/10.1093/bioinformatics/btx794

    Article  CAS  PubMed  Google Scholar 

  35. Yu J, Xuan Z, Feng X et al (2019) A novel collaborative filtering model for LncRNA–disease association prediction based on the Naïve Bayesian classifier. BMC Bioinform 20:1–13. https://doi.org/10.1186/s12859-019-2985-0

    Article  CAS  Google Scholar 

  36. Wang Y, Yu G, Wang J et al (2020) Weighted matrix factorization on multi-relational data for LncRNA–disease association prediction. Methods 173:32–43. https://doi.org/10.1016/j.ymeth.2019.06.015

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Yu G, Domeniconi C et al (2019) Selective matrix factorization for multi-relational data fusion. In: International conference on database systems for advanced applications. Springer, Berlin, pp 313–329. https://doi.org/10.1007/978-3-030-18576-3_19

  38. Zhu R, Wang Y, Liu J et al (2021) IPCARF: improving lncRNA–disease association prediction using incremental principal component analysis feature selection and a random forest classifier. BMC Bioinform 22(1):1–17. https://doi.org/10.1186/s12859-021-04104-9

    Article  CAS  Google Scholar 

  39. Li J, Li J, Kong M et al (2021) SVDNVLDA: predicting lncRNA–disease associations by singular value decomposition and node2vec. BMC Bioinform 22:1–18. https://doi.org/10.1186/s12859-021-04457-1

    Article  CAS  Google Scholar 

  40. Lu C, Xie M (2023) LDAEXC: LncRNA–disease associations prediction with deep autoencoder and XGBoost classifier. Interdiscip Sci 15(3):439–451. https://doi.org/10.1007/s12539-023-00573-z

    Article  CAS  PubMed  Google Scholar 

  41. Wu H, Liang Q, Zhang W et al (2022) iLncDA-LTR: identification of lncRNA–disease associations by learning to rank. Comput Biol Med 146:105605. https://doi.org/10.1016/j.compbiomed.2022.105605

    Article  CAS  PubMed  Google Scholar 

  42. Liang Q, Zhang W, Wu H et al (2023) LncRNA–disease association identification using graph auto-encoder and learning to rank. Brief Bioinform 24(1):bbac539. https://doi.org/10.1093/bib/bbac539

    Article  CAS  PubMed  Google Scholar 

  43. Peng L, Huang L, Su Q et al (2024) LDA-VGHB: identifying potential lncRNA–disease associations with singular value decomposition, variational graph auto-encoder and heterogeneous Newton boosting machine. Brief Bioinform 25(1):bbad466. https://doi.org/10.1093/bib/bbad466

    Article  Google Scholar 

  44. Wang T, Sun J, Zhao Q (2023) Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism. Comput Biol Med 153:106464. https://doi.org/10.1016/j.compbiomed.2022.106464

    Article  CAS  PubMed  Google Scholar 

  45. Wei D, Peslherbe GH, Selvaraj G et al (2022) Advances in drug design and development for human therapeutics using artificial intelligence—I. Biomolecules 12(12):1846. https://doi.org/10.3390/biom12121846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peng J, Hui W, Li Q et al (2019) A learning-based framework for miRNA–disease association identification using neural networks. Bioinformatics 35(21):4364–4371. https://doi.org/10.1093/bioinformatics/btz254

    Article  CAS  PubMed  Google Scholar 

  47. Chu Y, Zhang Y, Wang Q et al (2022) A transformer-based model to predict peptide-HLA class I binding and optimize mutated peptides for vaccine design. Nat Mach Intell 4(3):300–311. https://doi.org/10.1038/s42256-022-00459-7

    Article  Google Scholar 

  48. Chen Y, Wang J, Wang C et al (2022) Deep learning models for disease-associated circRNA prediction: a review. Brief Bioinform 23(6):bbac364. https://doi.org/10.1093/bib/bbac364

    Article  CAS  PubMed  Google Scholar 

  49. Sun F, Sun J, Zhao Q (2022) A deep learning method for predicting metabolite–disease associations via graph neural network. Brief Bioinform 23(4):bbac266. https://doi.org/10.1093/bib/bbac266

    Article  CAS  PubMed  Google Scholar 

  50. Lin S, Chen W, Chen G et al (2022) MDDI-SCL: predicting multi-type drug–drug interactions via supervised contrastive learning. J Cheminform 14(1):1–12. https://doi.org/10.1186/s13321-022-00659-8

    Article  Google Scholar 

  51. Peng L, Yuan R, Han C et al (2023) CellEnBoost: a boosting-based ligand–receptor interaction identification model for cell-to-cell communication inference. IEEE Trans Nanobiosci 22(4):705–715. https://doi.org/10.1109/TNB.2023.3278685

    Article  CAS  Google Scholar 

  52. Xu J, Xu J, Meng Y et al (2023) Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data. Cell Rep Methods 3(1):100382. https://doi.org/10.1016/j.crmeth.2022.100382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Peng L, He X, Peng X et al (2023) STGNNks: identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering. Comput Biol Med 166:107440. https://doi.org/10.1016/j.compbiomed.2023.107440

    Article  CAS  PubMed  Google Scholar 

  54. Zhou Z, Zhuo L, Fu X et al (2024) Joint masking and self-supervised strategies for inferring small molecule–miRNA associations. Mol Ther-Nucl Acids 35(1):102103. https://doi.org/10.1016/j.omtn.2023.102103

    Article  CAS  Google Scholar 

  55. Peng L, Xiong W, Han C et al (2024) Cell dialog: a computational framework for ligand–receptor-mediated cell–cell communication analysis. IEEE J Biomed Health 28(1):580–591. https://doi.org/10.1109/JBHI.2023.3333828

    Article  Google Scholar 

  56. Yang Q, Li X (2021) BiGAN: LncRNA–disease association prediction based on bidirectional generative adversarial network. BMC Bioinform 22:1–17. https://doi.org/10.1186/s12859-021-04273-7

    Article  CAS  Google Scholar 

  57. Wang W, Dai Q, Li F et al (2021) MLCDForest: multi-label classification with deep forest in disease prediction for long non-coding RNAs. Brief Bioinform 22(3):bbaa104. https://doi.org/10.1093/bib/bbaa104

    Article  CAS  PubMed  Google Scholar 

  58. Sheng N, Cui H, Zhang T et al (2021) Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA–disease association prediction. Brief Bioinform 22(3):bbaa067. https://doi.org/10.1093/bib/bbaa067

    Article  CAS  PubMed  Google Scholar 

  59. Sheng N, Wang Y, Huang L et al (2023) Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases. Brief Bioinform 24(5):bbad276. https://doi.org/10.1093/bib/bbad276

    Article  CAS  PubMed  Google Scholar 

  60. Fan Y, Chen M, Pan X (2022) GCRFLDA: scoring lncRNA–disease associations using graph convolution matrix completion with conditional random field. Brief Bioinform 23(1):bbab361. https://doi.org/10.1093/bib/bbab361

    Article  CAS  PubMed  Google Scholar 

  61. Ma Y (2022) DeepMNE: deep multi-network embedding for lncRNA–disease association prediction. IEEE J Biomed Health 26(7):3539–3549. https://doi.org/10.1109/JBHI.2022.3152619

    Article  Google Scholar 

  62. Zhu Y, Zhang F, Zhang S et al (2023) Predicting latent lncRNA and cancer metastatic event associations via variational graph auto-encoder. Methods 211:1–9. https://doi.org/10.1016/j.ymeth.2023.01.006

    Article  CAS  PubMed  Google Scholar 

  63. Zhao X, Zhao X, Yin M (2022) Heterogeneous graph attention network based on meta-paths for lncRNA–disease association prediction. Brief Bioinform 23(1):bbab407. https://doi.org/10.1093/bib/bbab407

    Article  CAS  PubMed  Google Scholar 

  64. Zhou Y, Wang X, Yao L et al (2022) LDAformer: predicting lncRNA–disease associations based on topological feature extraction and transformer encoder. Brief Bioinform 23(6):bbac370. https://doi.org/10.1093/bib/bbac370

    Article  CAS  PubMed  Google Scholar 

  65. Xuan P, Gong Z, Cui H et al (2022) Fully connected autoencoder and convolutional neural network with attention-based method for inferring disease-related lncRNAs. Brief Bioinform 23(3):bbac089. https://doi.org/10.1093/bib/bbac089

    Article  CAS  PubMed  Google Scholar 

  66. Liu Y, Yu Y, Zhao S (2022) Dual attention mechanisms and feature fusion networks based method for predicting LncRNA–disease associations. Interdiscip Sci 14(2):358–371. https://doi.org/10.1007/s12539-021-00492-x

    Article  PubMed  Google Scholar 

  67. Xuan P, Bai H, Cui H et al (2023) Specific topology and topological connection sensitivity enhanced graph learning for lncRNA–disease association prediction. Comput Biol Med 164:107265. https://doi.org/10.1016/j.compbiomed.2023.107265

    Article  PubMed  Google Scholar 

  68. Chen G, Wang Z, Wang D et al (2012) LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 41(D1):D983–D986. https://doi.org/10.1093/nar/gks1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cui T, Zhang L, Huang Y et al (2018) MNDR v2.0: an updated resource of ncRNA–disease associations in mammals. Nucleic Acids Res 46(D1):D371–D374. https://doi.org/10.1093/nar/gkx1025

    Article  CAS  PubMed  Google Scholar 

  70. Lowe HJ, Barnett GO (1994) Understanding and using the medical subject headings (MeSH) vocabulary to perform literature searches. Jama 271(14):1103–1108. https://doi.org/10.1001/jama.1994.03510380059038

    Article  CAS  PubMed  Google Scholar 

  71. Chen X, Clarence Yan C, Luo C et al (2015) Constructing lncRNA functional similarity network based on lncRNA–disease associations and disease semantic similarity. Sci Rep-UK 5(1):11338. https://doi.org/10.1038/srep11338

    Article  Google Scholar 

  72. Wang L, Wong L, Li Z et al (2022) A machine learning framework based on multi-source feature fusion for circRNA–disease association prediction. Brief Bioinform 23(5):bbac388. https://doi.org/10.1093/bib/bbac388

    Article  CAS  PubMed  Google Scholar 

  73. Fan W, Shang J, Li F et al (2020) IDSSIM: an lncRNA functional similarity calculation model based on an improved disease semantic similarity method. BMC Bioinform 21(1):1–14. https://doi.org/10.1186/s12859-020-03699-9

    Article  CAS  Google Scholar 

  74. Chen X, Huang Y-A, Wang X-S et al (2016) FMLNCSIM: fuzzy measure-based lncRNA functional similarity calculation model. Oncotarget 7(29):45948. https://doi.org/10.18632/oncotarget.10008

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang D, Wang J, Lu M et al (2010) Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26(13):1644–1650. https://doi.org/10.1093/bioinformatics/btq241

    Article  CAS  PubMed  Google Scholar 

  76. Wang Y-X, Zhang Y (2012) Nonnegative matrix factorization: a comprehensive review. IEEE Trans Knowl Data Eng 25(6):1336–1353. https://doi.org/10.1109/TKDE.2012.51

    Article  CAS  Google Scholar 

  77. Ding Y, Lei X, Liao B et al (2021) Predicting miRNA–disease associations based on multi-view variational graph auto-encoder with matrix factorization. IEEE J Biomed Health 26(1):446–457. https://doi.org/10.1109/JBHI.2021.3088342

    Article  Google Scholar 

  78. Salehi A, Davulcu H (2019) Graph attention auto-encoders. arXiv. https://doi.org/10.48550/arXiv.1905.10715

  79. Zhou Z, Zhuo L, Fu X et al (2024) Joint deep autoencoder and subgraph augmentation for inferring microbial responses to drugs. Brief Bioinform 25(1):bbad483. https://doi.org/10.1093/bib/bbad483

    Article  PubMed Central  Google Scholar 

  80. Peng L, Huang L, Tian G et al (2023) Predicting potential microbe–disease associations with graph attention autoencoder, positive-unlabeled learning, and deep neural network. Front Microbiol 14:1244527. https://doi.org/10.3389/fmicb.2023.1244527

    Article  PubMed  PubMed Central  Google Scholar 

  81. Veliçković P, Cucurull G, Casanova A et al (2017) Graph attention networks. arXiv. https://doi.org/10.48550/arXiv.1710.10903

  82. Deng L, Liu Z, Qian Y et al (2022) Predicting circRNA–drug sensitivity associations via graph attention auto-encoder. BMC Bioinform 23(1):1–15. https://doi.org/10.1186/s12859-022-04694-y

    Article  CAS  Google Scholar 

  83. Wu X, Lu W, Quan Y et al (2024) Deep dual graph attention auto-encoder for community detection. Expert Syst Appl 238:122182. https://doi.org/10.1016/j.eswa.2023.122182

    Article  Google Scholar 

  84. Wojtas M, Chen K (2020) Feature importance ranking for deep learning. Adv Neural Inf Process Syst 33:5105–5114. https://proceedings.neurips.cc/paper_files/paper/2020/file/36ac8e558ac7690b6f44e2cb5ef93322-Paper.pdf

  85. Lihong P, Wang C, Tian X et al (2022) Finding lncRNA–protein interactions based on deep learning with dual-net neural architecture. IEEE ACM Trans Comput Biol 19(6):3456–3468. https://doi.org/10.1109/TCBB.2021.3116232

    Article  Google Scholar 

  86. Mengshoel OJ (2008) Understanding the role of noise in stochastic local search: analysis and experiments. Artif Intell 172(8–9):955–990. https://doi.org/10.1016/j.artint.2007.09.010

    Article  Google Scholar 

  87. Soydaner D (2020) A comparison of optimization algorithms for deep learning. Int J Pattern Recognit 34(13):2052013. https://doi.org/10.1142/S0218001420520138

    Article  Google Scholar 

  88. Hailesilassie T (2016) Rule extraction algorithm for deep neural networks: a review. arXiv. https://doi.org/10.48550/arXiv.1610.05267

  89. Ding L, Wang M, Sun D et al (2018) TPGLDA: novel prediction of associations between lncRNAs and diseases via lncRNA-disease-gene tripartite graph. Sci Rep-UK 8(1):1065. https://doi.org/10.1038/s41598-018-19357-3

    Article  CAS  Google Scholar 

  90. Guo Z, You Z, Wang Y-B et al (2019) A learning-based method for LncRNA–disease association identification combing similarity information and rotation forest. IScience 19:786–795. https://doi.org/10.1016/j.isci.2019.08.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zeng M, Lu C, Zhang F et al (2020) SDLDA: lncRNA–disease association prediction based on singular value decomposition and deep learning. Methods 179:73–80. https://doi.org/10.1016/j.ymeth.2020.05.002

    Article  CAS  PubMed  Google Scholar 

  92. Zhang Y, Ye F, Xiong D et al (2020) LDNFSGB: prediction of long non-coding RNA and disease association using network feature similarity and gradient boosting. BMC Bioinform 21(1):1–27. https://doi.org/10.1186/s12859-020-03721-0

    Article  CAS  Google Scholar 

  93. Kumar S, Sharma AK, Lalhlenmawia H et al (2021) Natural compounds targeting major signaling pathways in lung cancer. In: Dua K, Löbenberg R, Malheiros Luzo ÂC, Shukla S, Satija S (eds) Targeting cellular signalling pathways in lung diseases. Springer, Singapore, pp 821–846. https://doi.org/10.1007/978-981-33-6827-9_37

    Chapter  Google Scholar 

  94. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  CAS  PubMed  Google Scholar 

  95. Ismail A, El-Mahdy HA, Abulsoud AI et al (2023) Beneficial and detrimental aspects of miRNAs as chief players in breast cancer: a comprehensive review. Int J Biol Macromol 224:1541–1565. https://doi.org/10.1016/j.ijbiomac.2022.10.241

    Article  CAS  PubMed  Google Scholar 

  96. Wilkinson L, Gathani T (2022) Understanding breast cancer as a global health concern. Brit J Radiol 95(1130):20211033. https://doi.org/10.1259/bjr.20211033

    Article  PubMed  Google Scholar 

  97. Arnold M, Morgan E, Rumgay H et al (2022) Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast 66:15–23. https://doi.org/10.1016/j.breast.2022.08.010

    Article  PubMed  PubMed Central  Google Scholar 

  98. Chen J, Lin J, Hu Y et al (2023) RNADisease v4.0: an updated resource of RNA-associated diseases, providing RNA-disease analysis, enrichment and prediction. Nucleic Acids Res 51(D1):D1397–D1404. https://doi.org/10.1093/nar/gkac814

    Article  PubMed  Google Scholar 

  99. Gao Y, Shang S, Guo S et al (2021) Lnc2Cancer 3.0: an updated resource for experimentally supported lncRNA/circRNA cancer associations and web tools based on RNA-seq and scRNA-seq data. Nucleic Acids Res 49(D1):D1251–D1258. https://doi.org/10.1093/nar/gkaa1006

    Article  CAS  PubMed  Google Scholar 

  100. Bao Z, Yang Z, Huang Z et al (2019) LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases. Nucleic Acids Res 47(D1):D1034–D1037. https://doi.org/10.1093/nar/gky905

    Article  CAS  PubMed  Google Scholar 

  101. Aliquò F, Minuti A, Avenoso A et al (2023) Endocan promotes pro-tumorigenic signaling in lung cancer cells: modulation of cell proliferation, migration and lncRNAs H19 and HULC expression. Int J Mol Sci 24(9):8178. https://doi.org/10.3390/ijms24098178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xu Y, Li J, Wang P et al (2019) LncRNA HULC promotes lung squamous cell carcinoma by regulating PTPRO via NF-\(\kappa \)B. J Cell Biochem 120(12):19415–19421. https://doi.org/10.1002/jcb.29119

    Article  CAS  PubMed  Google Scholar 

  103. Padua D, Mahurkar-Joshi S, Law IKM et al (2016) A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation. Am J Physiol Gastrointest Liver Physiol 311(3):G446–G457. https://doi.org/10.1152/ajpgi.00212.2016

    Article  PubMed  PubMed Central  Google Scholar 

  104. Gomez JA, Wapinski OL, Yang YW et al (2013) The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-\(\gamma \) locus. Cell 152(4):743–754. https://doi.org/10.1016/j.cell.2013.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ye J, Chen X, Lu W (2021) Identification and experimental validation of immune-associate lncRNAs for predicting prognosis in cervical cancer. Oncotargets Ther 14:4721. https://doi.org/10.2147/OTT.S322998

    Article  Google Scholar 

  106. Zhu L-L, Wu Z, Li R-K et al (2021) Deciphering the genomic and lncRNA landscapes of aerobic glycolysis identifies potential therapeutic targets in pancreatic cancer. Int J Biol Sci 17(1):107. https://doi.org/10.7150/ijbs.49243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhou L, Li H, Sun T et al (2022) HULC targets the IGF1R–PI3K-AKT axis in trans to promote breast cancer metastasis and cisplatin resistance. Cancer Lett 548:215861. https://doi.org/10.1016/j.canlet.2022.215861

    Article  CAS  PubMed  Google Scholar 

  108. Leisegang MS, Bains JK, Seredinski S et al (2022) HIF1\(\alpha \)-AS1 is a DNA:DNA:RNA triplex-forming lncRNA interacting with the HUSH complex. Nat Commun 13(1):6563. https://doi.org/10.1038/s41467-022-34252-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dalmasso B, Ghiorzo P (2023) Long non-coding RNAs and metabolic rewiring in pancreatic cancer. Cancers 15(13):3486. https://doi.org/10.3390/cancers15133486. https://www.mdpi.com/2072-6694/15/13/3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang H, Wang X, Wu Y et al (2021) Deciphering the molecular mechanism of long non-coding RNA HIFA-AS1 regulating pancreatic cancer cells. Res Square. https://doi.org/10.21203/rs.3.rs-533849/v1

  111. Cao M, Luo H, Li D et al (2022) Research advances on circulating long noncoding RNAs as biomarkers of cardiovascular diseases. Int J Cardiol 353:109–117. https://doi.org/10.1016/j.ijcard.2022.01.070

    Article  PubMed  Google Scholar 

  112. Yan Y, Wu D, Yang L et al (2023) The expanding roles of long non-coding RNAs in pancreatic cancer. Adv Ther 6(12):202300178. https://doi.org/10.1002/adtp.202300178

    Article  CAS  Google Scholar 

  113. Wang Z, Cao Z, Wang Z (2021) Significance of long non-coding RNA IFNG-AS1 in the progression and clinical prognosis in colon adenocarcinoma. Bioengineered 12(2):11342–11350. https://doi.org/10.1080/21655979.2021.2003944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xu F, Huang M, Chen Q et al (2021) LncRNA HIF1A-AS1 promotes gemcitabine resistance of pancreatic cancer by enhancing glycolysis through modulating the AKT/YB1/HIF1\(\alpha \) pathway. Cancer Res 81(22):5678–5691. https://doi.org/10.1158/0008-5472.CAN-21-0281

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very thankful for three anonymous reviewers and all authors of references.

Funding

L.H. Peng was supported by National Natural Science Foundation of China under Grant nos. 62072172 and 61803151 and Natural Science Foundation of Hunan Province of China under Grant 2023JJ50201. M. Chen was supported by National Natural Science Foundation of China under Grant no. 62172158.

Author information

Authors and Affiliations

Authors

Contributions

L.H. Peng and L.L. Huang: conceptualization; L.H. Peng, and M. Chen: funding acquisition; L.H. Peng, L.L. Huang, and M. Chen: project administration; L.H. Peng and M.N. Ren: writing—original draft; L.H. Peng and M. Chen: writing—review and editing; L.H. Peng, M.N. Ren, L.L. Huang, and M. Chen: investigation; L.H. Peng, M.N. Ren, and L.L. Huang: methodology; L.L. Huang and M.N. Ren: software; L.H. Peng, L.L. Huang, and M. Chen: validation. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Min Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Ren, M., Huang, L. et al. GEnDDn: An lncRNA–Disease Association Identification Framework Based on Dual-Net Neural Architecture and Deep Neural Network. Interdiscip Sci Comput Life Sci (2024). https://doi.org/10.1007/s12539-024-00619-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12539-024-00619-w

Keywords

Navigation