Skip to main content
Log in

Dual Attention Mechanisms and Feature Fusion Networks Based Method for Predicting LncRNA-Disease Associations

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

LncRNAs play a part in numerous momentous processes of biology such as disease diagnoses, preventions and treatments. The associations between various diseases and lncRNAs are one of the crucial approaches to learn the role and status of lncRNAs in human diseases. With the researches on lncRNA and diseases, multiple methods based on neural network have been employed to predict these associations. However, the deep and complicated characteristic representations of lncRNA-disease associations were failed to be extracted, and the discriminative contributions of the interactions, correlations, and similarities among miRNAs diseases, and lncRNAs for the correlation predictions were ignored. In this paper, based on the multibiology premise of lncRNAs, miRNAs, and diseases, a dual attention network was proposed to predict the model of lncRNA-disease associations for miRNAs, the disease characteristic matrix, and lncRNAs. Through two attention modules, we enable the model to learn the nonlinear, more complex and useful features of lncRNA, miRNA, and disease characteristic matrix. For the feature embedding matrix composed of lncRNA-disease, the connection between lncRNA-disease feature embedding matrix and lncRNA, miRNA, and disease characteristic matrix was enhanced through deconvolution and feature fusion layer. Compared with several latest methods, the method proposed in this paper can produce better performance. Researches on the cases of osteosarcoma, lung cancer, and gastric cancer have confirmed the effective recognition of potential lncRNA-disease associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220(2):126–139. https://doi.org/10.1002/path.2638

    Article  CAS  PubMed  Google Scholar 

  2. Zeng M, Lu C, Zhang F, Li Y, Wu FX, Li Y, Li M (2020) SDLDA: lncRNA-disease association prediction based on singular value decomposition and deep learning. Methods 179:73–80. https://doi.org/10.1016/j.ymeth.2020.05.002

    Article  CAS  PubMed  Google Scholar 

  3. Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20(3):300–307. https://doi.org/10.1038/nsmb.2480

    Article  CAS  PubMed  Google Scholar 

  4. Zhang T, Wang M, Xi J, Li A (2020) LPGNMF: predicting long non-coding RNA and protein interaction using graph regularized nonnegative matrix factorization. IEEE/ACM Trans Comput Biol Bioinf 17(1):189–197. https://doi.org/10.1109/TCBB.2018.2861009

    Article  CAS  Google Scholar 

  5. Bressin A, Schultesasse R, Figini D, Urdaneta EC, Beckmann BM, Marsico A (2019) TriPepSVM: de novo prediction of RNA-binding proteins based on short amino acid motifs. Nucleic Acids Res 47(9):4406–4417. https://doi.org/10.1093/nar/gkz203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heller D, Krestel R, Ohler U, Vingron M, Marsico A (2017) SSHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data. Nucleic Acids Res 45(19):11004–11018. https://doi.org/10.1093/nar/gkx756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR, Israel MA (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Can Res 67(6):2456–2468. https://doi.org/10.1093/bioinformatics/btq241

    Article  CAS  Google Scholar 

  8. Hrdlickova B, De Almeida RC, Borek Z, Withoff S (2014) Genetic variation in the non-coding genome: involvement of micro-RNAs and long non-coding RNAs in disease. Biochim Biophys Acta 1842(10):1910–1922. https://doi.org/10.1016/j.bbadis.2014.03.011

    Article  CAS  PubMed  Google Scholar 

  9. Piro RM, Marsico A (2019) Network-based methods and other approaches for predicting LncRNA functions and disease associations. Methods Mol Biol (Clifton, NJ). https://doi.org/10.1007/978-1-4939-8982-9_12

    Article  Google Scholar 

  10. Fu L, Peng Q (2017) A deep ensemble model to predict miRNA-disease association. Sci Rep 7(1):14482–14482. https://doi.org/10.1038/s41598-017-15235-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mamoshina P, Vieira A, Putin E, Zhavoronkov A (2016) Applications of deep learning in biomedicine. Mol Pharm 13(5):1445–1454. https://doi.org/10.1021/acs.molpharmaceut.5b00982

    Article  CAS  PubMed  Google Scholar 

  12. Chen X, Yan CC, Luo C, Ji W, Zhang Y, Dai Q (2015) Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic similarity. Sci Rep 5(1):11338–11338. https://doi.org/10.1038/srep11338

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ping P, Wang L, Kuang L, Ye S, Iqbal MFB, Pei T (2018) A novel method for lncRNA-disease association prediction based on an lncRNA-disease association network. IEEE/ACM Trans Comput Biol Bioinform. https://doi.org/10.1109/TCBB.2018.2827373

    Article  PubMed  Google Scholar 

  14. Xuan P, Sheng N, Zhang T, Liu Y, Guo Y (2019) CNNDLP: a method based on convolutional autoencoder and convolutional neural network with adjacent edge attention for predicting lncrna-disease associations. Int J Mol ENCES 20(17):4260. https://doi.org/10.3390/ijms20174260

    Article  CAS  Google Scholar 

  15. Ping Xuan, Yihua Dong, Yahong Guo, Tiangang Zhang, Yong Liu (2018) Dual convolutional neural network based method for predicting disease-related miRNAs. Int J Mol Sci. https://doi.org/10.3390/ijms19123732

    Article  Google Scholar 

  16. Ping P, Wang L, Kuang L, Ye S, Iqbal MFB, Pei T (2019) A novel method for lncRNA-disease association prediction based on an lncRNA-disease association network. IEEE/ACM Trans Comput Biol Bioinf 16(2):688–693. https://doi.org/10.1109/TCBB.2018.2827373

    Article  Google Scholar 

  17. Lan W, Li M, Zhao K, Liu J, Wu F, Pan Y, Wang J (2016) LDAP: a web server for lncRNA-disease association prediction. Bioinformatics 33(3):458–460. https://doi.org/10.1093/bioinformatics/btw639

    Article  CAS  Google Scholar 

  18. Fu G, Wang J, Domeniconi C, Yu G (2018) Matrix factorization-based data fusion for the prediction of lncRNA-disease associations. Bioinformatics 34(9):1529–1537. https://doi.org/10.1093/bioinformatics/btx794

    Article  CAS  PubMed  Google Scholar 

  19. Lu C, Yang M, Luo F, Wu F, Li M, Pan Y, Li Y, Wang J (2018) Prediction of lncRNA-disease associations based on inductive matrix completion. Bioinformatics 34(19):3357–3364. https://doi.org/10.1093/bioinformatics/bty327

    Article  CAS  PubMed  Google Scholar 

  20. Ning S, Zhang J, Wang P, Zhi H, Wang J, Liu Y, Gao Y, Guo M, Yue M, Wang L et al (2016) Lnc2cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers. Nucleic Acids Res 44(D1):D980–D985. https://doi.org/10.1093/nar/gkv1094

    Article  CAS  PubMed  Google Scholar 

  21. Ning S, Zhang J, Peng W, Zhi H, Wang J, Yue L, Gao Y, Guo M, Ming Y, Wang L (2016) Lnc2cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers. Nucleic Acids Res D1:D980–D985. https://doi.org/10.1093/nar/gkv1094

    Article  CAS  Google Scholar 

  22. Lu Z, Bretonnel CK, Hunter L (2007) Generif quality assurance as summary revision. 269–280. https://doi.org/10.1142/9789812772435_026

  23. Li J, Liu S, Zhou H, Qu L, Yang J (2014) starbase v2.0: decoding miRNA–ceRNA, miRNA–ncRNA and protein-RNA interaction networks from large-scale clip-seq data. Nucleic Acids Res 42:92–97. https://doi.org/10.1093/nar/gkt1248

    Article  CAS  Google Scholar 

  24. Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q (2014) HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 42(D1):D1070–D1074. https://doi.org/10.1093/nar/gkt1023

    Article  CAS  PubMed  Google Scholar 

  25. Cheng L, Hu Y, Sun J, Zhou M, Jiang Q (2018) DincRNA: a comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function. Bioinformatics 34(11):1953–1956. https://doi.org/10.1093/bioinformatics/bty002

    Article  CAS  PubMed  Google Scholar 

  26. Wang D, Wang J, Lu M, Song F, Cui Q (2010) Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26(13):1644–1650. https://doi.org/10.1093/bioinformatics/btq241

    Article  CAS  PubMed  Google Scholar 

  27. Xu Y, Guo M, Liu X, Wang C, Liu Y (2014) Inferring the soybean (glycine max) microRNA functional network based on target gene network. Bioinformatics 30(1):94–103. https://doi.org/10.1093/bioinformatics/btt605

    Article  CAS  PubMed  Google Scholar 

  28. Xuan P, Pan S, Zhang T, Liu Y, Sun H (2019) Graph convolutional network and convolutional neural network based method for predicting lncRNA-disease associations. Cells 8(9):1012. https://doi.org/10.3390/cells8091012

    Article  PubMed Central  Google Scholar 

  29. Chao P, Zhang X, Gang Y, Luo G, Jian S (2017) Large kernel matters-improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4353–4361. https://doi.org/10.1109/CVPR.2017.189

  30. Fu J, Liu J, Tian H, Li Y, Bao Y, Fang Z, Lu H (2019) Dual attention network for scene segmentation. In: Computer vision and pattern recognition, pp 3146–3154. https://doi.org/10.1109/CVPR.2019.00326

  31. Yarotsky Dmitry (2017) Error bounds for approximations with deep ReLU networks. Neural Netw 94:103–114. https://doi.org/10.1016/j.neunet.2017.07.002

    Article  PubMed  Google Scholar 

  32. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. In: Computation and language. arXiv:1409.0473

  33. Sheng N, Cui H, Zhang T, Xuan P (2020) Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA-disease association prediction. Brief Bioinform. https://doi.org/10.1093/bib/bbaa067

    Article  Google Scholar 

  34. Zhang H, Goodfellow I, Metaxas D, Odena A (2018) Self-attention generative adversarial networks. In: Machine learning. arXiv:1805.08318

  35. Xuan P, Shen T, Wang X, Zhang T, Zhang W (2018) Inferring disease-associated microRNAs in heterogeneous networks with node attributes. IEEE/ACM Trans Comput Biol Bioinf. https://doi.org/10.1109/TCBB.2018.2872574

    Article  Google Scholar 

  36. Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1933–1941. https://doi.org/10.1109/CVPR.2016.213

  37. Wang X, Yu K, Dong C, Loy CC (2018) Recovering realistic texture in image super-resolution by deep spatial feature transform. In: Computer vision and pattern recognition, pp 606–615. arXiv:1804.02815

  38. Lin T, Goyal P, Girshick R, He K, Dollar P (2017) Focal loss for dense object detection. In: Computer vision and pattern recognition, pp 2999–3007. https://doi.org/10.1109/ICCV.2017.324

  39. Hajian-Tilaki K (2013) Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 4(2):627–635

    PubMed  PubMed Central  Google Scholar 

  40. Sun X, Xin Y, Wang M, Li S, Miao S, Xuan Y, Wang Y, Lu T, Liu J, Jiao W (2018) Overexpression of long non-coding RNA kcnq1ot1 is related to good prognosis via inhibiting cell proliferation in non-small cell lung cancer. Thoracic Cancer. https://doi.org/10.1111/1759-7714.12599

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bahari F, Emadibaygi M, Nikpour P (2015) mir-17-92 host gene, uderexpressed in gastric cancer and its expression was negatively correlated with the metastasis. Indian J Cancer 52(1):22–25. https://doi.org/10.4103/0019-509X.175605

    Article  CAS  PubMed  Google Scholar 

  42. Zhang J, Lu S, Zhu JF, Yang KP (2016) Up-regulation of LncRNA HULC predicts a poor prognosis and promotes growth and metastasis in non-small cell lung cancer. Int J Clin Exp Pathol 9(12):12415–12422

    CAS  Google Scholar 

  43. Sun B, Yang N (2017) Long non-coding RNA mir155hg promotes proliferation, migration and invasion of a549 human lung cancer cells. Journal of Chongqing Medical University

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Research involving human participants and/or animals

This article does not contain any studies with human participants and animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yu, Y. & Zhao, S. Dual Attention Mechanisms and Feature Fusion Networks Based Method for Predicting LncRNA-Disease Associations. Interdiscip Sci Comput Life Sci 14, 358–371 (2022). https://doi.org/10.1007/s12539-021-00492-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-021-00492-x

Keywords

Navigation